SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Van Westen Danielle) ;pers:(Pereira Joana B.)"

Sökning: WFRF:(Van Westen Danielle) > Pereira Joana B.

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmadi, Khazar, et al. (författare)
  • Fixel-Based Analysis Reveals Tau-Related White Matter Changes in Early Stages of Alzheimer’s Disease
  • 2024
  • Ingår i: Journal of Neuroscience. - 0270-6474. ; 44:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Several studies have shown white matter (WM) abnormalities in Alzheimer’s disease (AD) using diffusion tensor imaging (DTI). Nonetheless, robust characterization of WM changes has been challenging due to the methodological limitations of DTI. We applied fixel-based analyses (FBA) to examine microscopic differences in fiber density (FD) and macroscopic changes in fiber cross-section (FC) in early stages of AD (N = 393, 212 females). FBA was also compared with DTI, free-water corrected (FW)-DTI and diffusion kurtosis imaging (DKI). We further investigated the correlation of FBA and tensor-derived metrics with AD pathology and cognition. FBA metrics were decreased in the entire cingulum bundle, uncinate fasciculus and anterior thalamic radiations in Aβ-positive patients with mild cognitive impairment compared to control groups. Metrics derived from DKI, and FW-DTI showed similar alterations whereas WM degeneration detected by DTI was more widespread. Tau-PET uptake in medial temporal regions was only correlated with reduced FC mainly in the parahippocampal cingulum in Aβ-positive individuals. This tau-related WM alteration was also associated with impaired memory. Despite the spatially extensive between-group differences in DTI-metrics, the link between WM and tau aggregation was only revealed using FBA metrics implying high sensitivity but low specificity of DTI-based measures in identifying subtle tau-related WM degeneration. No relationship was found between amyloid load and any diffusion-MRI measures. Our results indicate that early tau-related WM alterations in AD are due to macrostructural changes specifically captured by FBA metrics. Thus, future studies assessing the effects of AD pathology in WM tracts should consider using FBA metrics.
  •  
2.
  • Ahmadi, Khazar, et al. (författare)
  • Gray matter hypoperfusion is a late pathological event in the course of Alzheimer's disease
  • 2023
  • Ingår i: Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. - 1559-7016. ; 43:4, s. 565-580
  • Tidskriftsartikel (refereegranskat)abstract
    • Several studies have shown decreased cerebral blood flow (CBF) in Alzheimer's disease (AD). However, the role of hypoperfusion in the disease pathogenesis remains unclear. Combining arterial spin labeling MRI, PET, and CSF biomarkers, we investigated the associations between gray matter (GM)-CBF and the key mechanisms in AD including amyloid-β (Aβ) and tau pathology, synaptic and axonal degeneration. Further, we applied a disease progression modeling to characterize the temporal sequence of different AD biomarkers. Lower perfusion was observed in temporo-occipito-parietal cortex in the Aβ-positive cognitively impaired compared to both Aβ-negative and Aβ-positive cognitively unimpaired individuals. In participants along the AD spectrum, GM-CBF was associated with tau, synaptic and axonal dysfunction, but not Aβ in similar cortical regions. Axonal degeneration was further associated with hypoperfusion in cognitively unimpaired individuals. Disease progression modeling revealed that GM-CBF disruption Followed the abnormality of biomarkers of Aβ, tau and brain atrophy. These findings indicate that tau tangles and neurodegeneration are more closely connected with GM-CBF changes than Aβ pathology. Although subjected to the sensitivity of the employed neuroimaging techniques and the modeling approach, these findings suggest that hypoperfusion might not be an early event associated with the build-up of Aβ in preclinical phase of AD.
  •  
3.
  • Jalakas, Mattis, et al. (författare)
  • A quick test of cognitive speed can predict development of dementia in Parkinson’s disease
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson’s disease (PD) patients frequently develop cognitive impairment. There is a need for brief clinical assessments identifying PD patients at high risk of progressing to dementia. In this study, we look into predicting dementia in PD and underlying structural and functional correlates to cognitive decline in PD. We included 175 patients with PD, 30 with PD dementia, 51 neurologically healthy controls and 121 patients with Alzheimer’s disease (AD) from Skane University Hospital, BIOFINDER cohorts. All underwent cognitive tests, including MMSE, 10-word list delayed recall (ADAS-cog), A Quick Test of cognitive speed (AQT), Letter S fluency, Clock Drawing Test (CDT) and pentagon copying. In non-demented patients with PD, abnormal AQT and CDT results predicted an increased risk of subsequent development of dementia (hazard ratio 2.2 for both). When comparing the cognitive profile between PD and AD, decreased performance on AQT, which measures attention and processing speed, was more typical in PD. Lastly, we investigated the underlying structural and functional correlates for the PD-specific test AQT with magnetic resonance imaging. In PD patients, decreased performance on AQT was associated with i) cortical thinning in temporoparietal regions, ii) changes in diffusion MRI, especially in the cingulum tract, and iii) decreased functional connectivity in posterior brain networks.
  •  
4.
  • Mårtensson, Gustav, et al. (författare)
  • Medial temporal atrophy in preclinical dementia : Visual and automated assessment during six year follow-up
  • 2020
  • Ingår i: NeuroImage: Clinical. - : Elsevier BV. - 2213-1582. ; 27
  • Tidskriftsartikel (refereegranskat)abstract
    • Medial temporal lobe (MTL) atrophy is an important morphological marker of many dementias and is closely related to cognitive decline. In this study we aimed to characterize longitudinal progression of MTL atrophy in 93 individuals with subjective cognitive decline and mild cognitive impairment followed up over six years, and to assess if clinical rating scales are able to detect these changes. All MRI images were visually rated according to Scheltens’ scale of medial temporal atrophy (MTA) by two neuroradiologists and AVRA, a software for automated MTA ratings. The images were also segmented using FreeSurfer's longitudinal pipeline in order to compare the MTA ratings to volumes of the hippocampi and inferior lateral ventricles. We found that MTL atrophy rates increased with CSF biomarker abnormality, used to define preclinical stages of Alzheimer's Disease. Both AVRA's and the radiologists’ MTA ratings showed similar longitudinal trends as the subcortical volumes, suggesting that visual rating scales provide a valid alternative to automatic segmentations. Our results further showed that it took more than 8 years on average for individuals with mild cognitive impairment, and an Alzheimer's disease biomarker profile, to increase the MTA score by one. This suggests that discrete MTA ratings are too coarse for tracking individual MTL atrophy in short time spans. While the MTA scores from each radiologist showed strong correlations to subcortical volumes, the inter-rater agreement was low. We conclude that the main limitation of quantifying MTL atrophy with visual ratings in clinics is the subjectiveness of the assessment.
  •  
5.
  • Pereira, Joana B., et al. (författare)
  • Abnormal structural brain connectome in individuals with preclinical Alzheimer's disease
  • 2018
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 28:10, s. 3638-3649
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease has a long preclinical phase during which amyloid pathology and neurodegeneration accumulate in the brain without producing overt cognitive deficits. It is currently unclear whether these early disease stages are associated with a progressive disruption in the communication between brain regions that subsequently leads to cognitive decline and dementia. In this study we assessed the organization of structural networks in cognitively normal (CN) individuals harboring amyloid pathology (A+N-), neurodegeneration (A-N+), or both (A+N+) from the prospective and longitudinal Swedish BioFINDER study. We combined graph theory with diffusion tensor imaging to investigate integration, segregation, and centrality measures in the brain connectome in the previous groups. At baseline, our findings revealed a disrupted network topology characterized by longer paths, lower efficiency, increased clustering and modularity in CN A-N+ and CN A+N+, but not in CN A+N-. After 2 years, CN A+N+ showed significant abnormalities in all global network measures, whereas CN A-N+ only showed abnormalities in the global efficiency. Network connectivity and organization were associated with memory in CN A+N+ individuals. Altogether, our findings suggest that amyloid pathology is not sufficient to disrupt structural network topology, whereas neurodegeneration is.
  •  
6.
  • Pereira, Joana B., et al. (författare)
  • Amyloid network topology characterizes the progression of Alzheimer's disease during the predementia stages
  • 2018
  • Ingår i: Cerebral Cortex. - : Oxford University Press (OUP). - 1047-3211 .- 1460-2199. ; 28:1, s. 340-349
  • Tidskriftsartikel (refereegranskat)abstract
    • There is increasing evidence showing that the accumulation of the amyloid-β (Aβ) peptide into extracellular plaques is a central event in Alzheimer's disease (AD). These abnormalities can be detected as lowered levels of Aβ42 in the cerebrospinal fluid (CSF) and are followed by increased amyloid burden on positron emission tomography (PET) several years before the onset of dementia. The aim of this study was to assess amyloid network topology in nondemented individuals with early stage Aβ accumulation, defined as abnormal CSF Aβ42 levels and normal Florbetapir PET (CSF+/PET-), and more advanced Aβ accumulation, defined as both abnormal CSF Aβ42 and Florbetapir PET (CSF+/PET+). The amyloid networks were built using correlations in the mean 18F-florbetapir PET values between 72 brain regions and analyzed using graph theory analyses. Our findings showed an association between early amyloid stages and increased covariance as well as shorter paths between several brain areas that overlapped with the default-mode network (DMN). Moreover, we found that individuals with more advanced amyloid accumulation showedmore widespread changes in brain regions both within and outside the DMN. These findings suggest that amyloid network topology could potentially be used to assess disease progression in the predementia stages of AD.
  •  
7.
  • Pereira, Joana B., et al. (författare)
  • Longitudinal degeneration of the basal forebrain predicts subsequent dementia in Parkinson's disease
  • 2020
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961 .- 1095-953X. ; 139
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Cholinergic dysfunction plays a prominent role in cognitive impairment in Parkinson's disease (PD). The aim of this study was to assess the relationship of baseline and longitudinal basal forebrain atrophy with cognitive decline and dementia in PD. Methods: We included 106 non-demented PD patients, 19 PD dementia (PDD) patients and 42 controls with longitudinal structural MRI and cognitive testing. After 4.2 ± 1.8 years, 20 non-demented PD patients were diagnosed with dementia (PD-dementia converters), whereas the rest of PD patients remained non-demented (stable-PD). We compared MRI volumes of the medial septum/diagonal band (Ch1/Ch2) and nucleus basalis of Meynert (Ch4) between groups. Cox regression analyses were applied to test whether Ch1/Ch2 or Ch4 atrophy could predict future dementia and linear mixed models assessed their association with cognitive decline. Results: Compared to controls, we found reduced Ch4 baseline volumes in PD-dementia converters (p =.003) and those who already had PDD (p <.001) but not in stable-PD. Over time, there was a greater loss in Ch1/Ch2 volumes in PD-dementia converters and PDD compared to the other groups (p =.004). Baseline and longitudinal Ch4 volumes were associated with cognition (p <.002) and longitudinal Ch4 atrophy predicted future dementia (p =.009). Conclusions: Atrophy of Ch4 precedes and predicts future dementia in PD and is followed by changes in Ch1/Ch2, reflecting a posterior-anterior pattern of basal forebrain atrophy. This pattern could be used to track the spread of cholinergic degeneration and identify patients at risk of developing dementia.
  •  
8.
  • Pereira, Joana B., et al. (författare)
  • Plasma markers predict changes in amyloid, tau, atrophy and cognition in non-demented subjects
  • 2021
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 144:9, s. 2826-2836
  • Tidskriftsartikel (refereegranskat)abstract
    • It is currently unclear whether plasma biomarkers can be used as independent prognostic tools to predict changes associated with early Alzheimer's disease. In this study, we sought to address this question by assessing whether plasma biomarkers can predict changes in amyloid load, tau accumulation, brain atrophy and cognition in non-demented individuals. To achieve this, plasma amyloid-β 42/40 (Aβ42/40), phosphorylated-tau181, phosphorylated-tau217 and neurofilament light were determined in 159 non-demented individuals, 123 patients with Alzheimer's disease dementia and 35 patients with a non-Alzheimer's dementia from the Swedish BioFINDER-2 study, who underwent longitudinal amyloid (18F-flutemetamol) and tau (18F-RO948) PET, structural MRI (T1-weighted) and cognitive testing. Our univariate linear mixed effect models showed there were several significant associations between the plasma biomarkers with imaging and cognitive measures. However, when all biomarkers were included in the same multivariate linear mixed effect models, we found that increased longitudinal amyloid-PET signals were independently predicted by low baseline plasma Aβ42/40 (P = 0.012), whereas increased tau-PET signals, brain atrophy and worse cognition were independently predicted by high plasma phosphorylated-tau217 (P < 0.004). These biomarkers performed equally well or better than the corresponding biomarkers measured in the CSF. In addition, they showed a similar performance to binary plasma biomarker values defined using the Youden index, which can be more easily implemented in the clinic. In addition, plasma Aβ42/40 and phosphorylated-tau217 did not predict longitudinal changes in patients with a non-Alzheimer's neurodegenerative disorder. In conclusion, our findings indicate that plasma Aβ42/40 and phosphorylated-tau217 could be useful in clinical practice, research and drug development as prognostic markers of future Alzheimer's disease pathology.
  •  
9.
  • Srikrishna, Meera, et al. (författare)
  • CT-based volumetric measures obtained through deep learning: Association with biomarkers of neurodegeneration
  • 2024
  • Ingår i: Alzheimers & Dementia. - 1552-5260. ; 20:1, s. 629-640
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTIONCranial computed tomography (CT) is an affordable and widely available imaging modality that is used to assess structural abnormalities, but not to quantify neurodegeneration. Previously we developed a deep-learning-based model that produced accurate and robust cranial CT tissue classification.MATERIALS AND METHODSWe analyzed 917 CT and 744 magnetic resonance (MR) scans from the Gothenburg H70 Birth Cohort, and 204 CT and 241 MR scans from participants of the Memory Clinic Cohort, Singapore. We tested associations between six CT-based volumetric measures (CTVMs) and existing clinical diagnoses, fluid and imaging biomarkers, and measures of cognition.RESULTSCTVMs differentiated cognitively healthy individuals from dementia and prodromal dementia patients with high accuracy levels comparable to MR-based measures. CTVMs were significantly associated with measures of cognition and biochemical markers of neurodegeneration.DISCUSSIONThese findings suggest the potential future use of CT-based volumetric measures as an informative first-line examination tool for neurodegenerative disease diagnostics after further validation.HIGHLIGHTSComputed tomography (CT)-based volumetric measures can distinguish between patients with neurodegenerative disease and healthy controls, as well as between patients with prodromal dementia and controls.CT-based volumetric measures associate well with relevant cognitive, biochemical, and neuroimaging markers of neurodegenerative diseases.Model performance, in terms of brain tissue classification, was consistent across two cohorts of diverse nature.Intermodality agreement between our automated CT-based and established magnetic resonance (MR)-based image segmentations was stronger than the agreement between visual CT and MR imaging assessment.
  •  
10.
  • Srikrishna, Meera, et al. (författare)
  • Deep learning from MRI-derived labels enables automatic brain tissue classification on human brain CT
  • 2021
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 244
  • Tidskriftsartikel (refereegranskat)abstract
    • Automatic methods for feature extraction, volumetry, and morphometric analysis in clinical neuroscience typically operate on images obtained with magnetic resonance (MR) imaging equipment. Although CT scans are less expensive to acquire and more widely available than MR scans, their application is currently limited to the visual assessment of brain integrity and the exclusion of co-pathologies. CT has rarely been used for tissue classification because the contrast between grey matter and white matter was considered insufficient. In this study, we propose an automatic method for segmenting grey matter (GM), white matter (WM), cerebrospinal fluid (CSF), and intracranial volume (ICV) from head CT images. A U-Net deep learning model was trained and validated on CT images with MRI-derived segmentation labels. We used data from 744 participants of the Gothenburg H70 Birth Cohort Studies for whom CT and T1-weighted MR images had been acquired on the same day. Our proposed model predicted brain tissue classes accurately from unseen CT images (Dice coefficients of 0.79, 0.82, 0.75, 0.93 and 0.98 for GM, WM, CSF, brain volume and ICV, respectively). To contextualize these results, we generated benchmarks based on established MR-based methods and intentional image degradation. Our findings demonstrate that CT-derived segmentations can be used to delineate and quantify brain tissues, opening new possibilities for the use of CT in clinical practice and research.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy