SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vanhorebeek Ilse) "

Sökning: WFRF:(Vanhorebeek Ilse)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Derde, Sarah, et al. (författare)
  • Early Parenteral Nutrition Evokes a Phenotype of Autophagy Deficiency in Liver and Skeletal Muscle of Critically Ill Rabbits
  • 2012
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 153:5, s. 2267-2276
  • Tidskriftsartikel (refereegranskat)abstract
    • Muscular and hepatic abnormalities observed in artificially fed critically ill patients strikingly resemble the phenotype of autophagy-deficient mice. Autophagy is the only pathway to clear damaged organelles and large ubiquitinated proteins and aggregates. Fasting is its strongest physiological trigger. Severity of autophagy deficiency in critically ill patients correlated with the amount of infused amino acids. We hypothesized that impaired autophagy in critically ill patients could partly be evoked by early provision of parenteral nutrition enriched with amino acids in clinically used amounts. In a randomized laboratory investigation, we compared the effect of isocaloric moderate-dose iv feeding with fasting during illness on the previously studied markers of autophagy deficiency in skeletal muscle and liver. Critically ill rabbits were allocated to fasting or to iv nutrition (220 kcal/d, 921 kJ/d) supplemented with 50 kcal/d (209 kJ/d) of either glucose, amino acids, or lipids, while maintaining normoglycemia, and were compared with healthy controls. Fasted critically ill rabbits revealed weight loss and activation of autophagy. Feeding abolished these responses, with most impact of amino acid-enriched nutrition. Accumulation of p62 and ubiquitinated proteins in muscle and liver, indicative of insufficient autophagy, occurred with parenteral feeding enriched with amino acids and lipids. In liver, this was accompanied by fewer autophagosomes, fewer intact mitochondria, suppressed respiratory chain activity, and an increase in markers of liver damage. In muscle, early parenteral nutrition enriched with amino acids or lipids aggravated vacuolization of myofibers. In conclusion, early parenteral nutrition during critical illness evoked a phenotype of autophagy deficiency in liver and skeletal muscle.
  •  
2.
  • Derde, Sarah, et al. (författare)
  • Increasing intravenous glucose load in the presence of normoglycemia : Effect on outcome and metabolism in critically ill rabbits
  • 2010
  • Ingår i: Critical Care Medicine. - 0090-3493 .- 1530-0293. ; 38:2, s. 602-611
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Endocrine disturbances and a feeding-resistant wasting syndrome, characterized by a negative protein balance, promote delayed recovery and poor outcome of critical illness. Parenteral nutrition alone cannot counteract the hypercatabolic state, possibly in part as a result of aggravation of the hyperglycemic response to illness. In critically ill rabbits, we investigated the impact of varying amounts of intravenous glucose while maintaining normoglycemia on mortality, organ damage, and markers of catabolism/anabolism. Design: Prospective, randomized laboratory investigation. Setting: University animal and molecular laboratory. Subjects: Three-month-old male rabbits. Interventions: Critically ill rabbits were randomized into a fasting group, a standard parenteral nutrition group, and two groups receiving either intermediate or high additional physiological amounts of intravenous glucose while maintained normoglycemic with insulin. These groups were compared with a hyperglycemic group and healthy rabbits. Protein and lipid load was equal for all fed groups. Measurements and Main Results: Varying intravenous glucose load did not affect mortality or organ damage provided hyperglycemia was prevented. Fasted critically ill rabbits lost weight, which was attenuated by increasing intravenous glucose load. As compared with healthy rabbits, mRNA expression and/or activity of several ubiquitin-proteasome pathway components, cathepsin-L and calpain-1, was elevated in skeletal muscle of fasted critically ill rabbits. Intravenous feeding was able to counteract this response. Excessive glucose load and/or hyperglycemia, however, reduced the protective effect of feeding. Genes investigated in the diaphragm and myocardium revealed roughly a similar response. Except in the normoglycemic group with intermediate glucose load, circulating thyroid hormone and insulin-like growth factor-1 levels decreased, most pronounced in hyperglycemic rabbits. Conclusions: Increasing intravenous glucose infusion within the physiological range, while maintaining normoglycemia, was safe for organ function and survival of critically ill rabbits. Concomitantly, it reduced the catabolic responses as compared with fasting. Whether this has a beneficial effect on muscle function and mass remains to be investigated.
  •  
3.
  • Derde, Sarah, et al. (författare)
  • Muscle atrophy and preferential loss of myosin in prolonged critically ill patients
  • 2012
  • Ingår i: Critical Care Medicine. - 0090-3493 .- 1530-0293. ; 40:1, s. 79-89
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Muscle weakness contributes to prolonged rehabilitation and adverse outcome of critically ill patients. Distinction between a neurogenic and/or myogenic underlying problem is difficult using routine diagnostic tools. Preferential loss of myosin has been suggested to point to a myogenic component. We evaluated markers of muscle atrophy and denervation, and the myosin/actin ratio in limb and abdominal wall skeletal muscle, of prolonged critically ill patients and matched controls in relation to insulin therapy and known risk factors for intensive care unit-acquired weakness. DESIGN: Secondary analysis of two large, prospective, single-center randomized clinical studies. SETTING: University hospital surgical and medical intensive care unit. PATIENTS: Critically ill patients and matched controls. INTERVENTIONS: Intensive care unit patients had been randomized to blood glucose control to 80-110 mg/dL with insulin infusion or conventional glucose management, where insulin was only administered when glucose levels rose above 215 mg/dL. MEASUREMENTS AND MAIN RESULTS: As compared with controls, rectus abdominis and vastus lateralis muscle of critically ill patients showed smaller myofiber size, decreased mRNA levels for myofibrillar proteins, increased proteolytic enzyme activities, and a lower myosin/actin ratio, virtually irrespective of insulin therapy. Increased forkhead box protein O1 action may have played a role. Most alterations were more severe in patients treated with corticosteroids. Duration of corticosteroid treatment, independent of duration of intensive care unit stay or other risk factors, was a dominant risk factor for a low myosin/actin ratio. The immature acetylcholine receptor subunit γ mRNA expression was elevated in vastus lateralis, independent of the myosin/actin ratio. CONCLUSIONS: Both limb and abdominal wall skeletal muscles of prolonged critically ill patients showed downregulation of protein synthesis at the gene expression level as well as increased proteolysis. This affected myosin to a greater extent than actin, resulting in a decreased myosin/actin ratio. Muscle atrophy was not ameliorated by intensive insulin therapy, but possibly aggravated by corticosteroids.
  •  
4.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy