SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vellend Mark) "

Sökning: WFRF:(Vellend Mark)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
2.
  • Norberg, Jon, et al. (författare)
  • Eco-evolutionary responses of biodiversity to climate change
  • 2012
  • Ingår i: Nature Climate Change. - 1758-678X .- 1758-6798. ; 2:10, s. 747-751
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change is predicted to alter global species diversity(1), the distribution of human pathogens' and ecosystem services(3). Forecasting these changes and designing adequate management of future ecosystem services will require predictive models encompassing the most fundamental biotic responses. However, most present models omit important processes such as evolution and competition(4,5). Here we develop a spatially explicit eco-evolutionary model of multi-species responses to climate change. We demonstrate that both dispersal and evolution differentially mediate extinction risks and biodiversity alterations through time and across climate gradients. Together, high genetic variance and low dispersal best minimized extinction risks. Surprisingly, high dispersal did not reduce extinctions, because the shifting ranges of some species hastened the decline of others. Evolutionary responses dominated during the later stages of climatic changes and in hot regions. No extinctions occurred without competition, which highlights the importance of including species interactions in global biodiversity models. Most notably, climate change created extinction and evolutionary debts, with changes in species richness and traits occuring long after climate stabilization. Therefore, even if we halt anthropogenic climate change today, transient eco-evolutionary dynamics would ensure centuries of additional alterations in global biodiversity.
  •  
3.
  • Balint, Miklos, et al. (författare)
  • Environmental DNA time series in ecology
  • 2018
  • Ingår i: Trends in Ecology & Evolution. - London : Elsevier. - 0169-5347 .- 1872-8383. ; 33:12, s. 945-957
  • Forskningsöversikt (refereegranskat)abstract
    • Ecological communities change in time and space, but long-term dynamics at the century-to-millennia scale are poorly documented due to lack of relevant data sets. Nevertheless, understanding long-term dynamics is important for explaining present-day biodiversity patterns and placing conservation goals in a historical context. Here, we use recent examples and new perspectives to highlight how environmental DNA (eDNA) is starting to provide a powerful new source of temporal data for research questions that have so far been overlooked, by helping to resolve the ecological dynamics of populations, communities, and ecosystems over hundreds to thousands of years. We give examples of hypotheses that may be addressed by temporal eDNA biodiversity data, discuss possible research directions, and outline related challenges.
  •  
4.
  • Björkman, Anne, 1981, et al. (författare)
  • Plant functional trait change across a warming tundra biome
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 562:7725, s. 57-62
  • Tidskriftsartikel (refereegranskat)abstract
    • The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature–trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.
  •  
5.
  • De Frenne, Pieter, et al. (författare)
  • Global buffering of temperatures under forest canopies
  • 2019
  • Ingår i: Nature Ecology & Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 3:5, s. 744-749
  • Tidskriftsartikel (refereegranskat)abstract
    • Macroclimate warming is often assumed to occur within forests despite the potential for tree cover to modify microclimates. Here, using paired measurements, we compared the temperatures under the canopy versus in the open at 98 sites across 5 continents. We show that forests function as a thermal insulator, cooling the understory when ambient temperatures are hot and warming the understory when ambient temperatures are cold. The understory versus open temperature offset is magnified as temperatures become more extreme and is of greater magnitude than the warming of land temperatures over the past century. Tree canopies may thus reduce the severity of warming impacts on forest biodiversity and functioning.
  •  
6.
  • De Frenne, Pieter, et al. (författare)
  • Microclimate moderates plant responses to macroclimate warming
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:46, s. 18561-18565
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent global warming is acting across marine, freshwater, and terrestrial ecosystems to favor species adapted to warmer conditions and/or reduce the abundance of cold-adapted organisms (i.e., thermophilization of communities). Lack of community responses to increased temperature, however, has also been reported for several taxa and regions, suggesting that climatic lags may be frequent. Here we show that microclimatic effects brought about by forest canopy closure can buffer biotic responses to macroclimate warming, thus explaining an apparent climatic lag. Using data from 1,409 vegetation plots in European and North American temperate forests, each surveyed at least twice over an interval of 12-67 y, we document significant thermophilization of ground-layer plant communities. These changes reflect concurrent declines in species adapted to cooler conditions and increases in species adapted to warmer conditions. However, thermophilization, particularly the increase of warm-adapted species, is attenuated in forests whose canopies have become denser, probably reflecting cooler growing-season ground temperatures via increased shading. As standing stocks of trees have increased in many temperate forests in recent decades, local microclimatic effects may commonly be moderating the impacts of macroclimate warming on forest understories. Conversely, increases in harvesting woody biomass-e.g., for bioenergy-may open forest canopies and accelerate thermophilization of temperate forest biodiversity.
  •  
7.
  • Vellend, Mark, et al. (författare)
  • Homogenization of forest plant communities and weakening of species–environment relationships via agricultural land use
  • 2007
  • Ingår i: Journal of Ecology. - : Wiley. - 0022-0477 .- 1365-2745. ; 95, s. 565-573
  • Tidskriftsartikel (refereegranskat)abstract
    • 1Disturbance may cause community composition across sites to become more or less homogenous, depending on the importance of different processes involved in community assembly. In north-eastern North America and Europe local (alpha) diversity of forest plants is lower in forests growing on former agricultural fields (recent forests) than in older (ancient) forests, but little is known about the influence of land-use history on the degree of compositional differentiation among sites (beta diversity).2Here we analyse data from 1446 sites in ancient and recent forests across 11 different landscapes in north-eastern North America and Europe to demonstrate decreases in beta diversity and in the strength of species–environment relationships in recent vs. ancient forests.3The magnitude of environmental variability among sites did not differ between the two forest types. This suggests the difference in beta diversity between ancient and recent forests was not due to different degrees of environmental heterogeneity, but rather to dispersal filters that constrain the pool of species initially colonizing recent forests.4The observed effects of community homogenization and weakened relationships between species distributions and environmental gradients appear to persist for decades or longer. The legacy of human land-use history in spatial patterns of biodiversity may endure, both within individual sites and across sites, for decades if not centuries.
  •  
8.
  • Verheyen, Kris, et al. (författare)
  • 201 Combining Biodiversity Resurveys across Regions to Advance Global Change Research
  • 2017
  • Ingår i: BioScience. - : Oxford University Press (OUP). - 0006-3568 .- 1525-3244. ; 67:1, s. 73-83
  • Tidskriftsartikel (refereegranskat)abstract
    • More and more ecologists have started to resurvey communities sampled in earlier decades to determine long-term shifts in community composition and infer the likely drivers of the ecological changes observed. However, to assess the relative importance of and interactions among multiple drivers, joint analyses of resurvey data from many regions spanning large environmental gradients are needed. In this article, we illustrate how combining resurvey data from multiple regions can increase the likelihood of driver orthogonality within the design and show that repeatedly surveying across multiple regions provides higher representativeness and comprehensiveness, allowing us to answer more completely a broader range of questions. We provide general guidelines to aid the implementation of multiregion resurvey databases. In so doing, we aim to encourage resurvey database development across other community types and biomes to advance global environmental change research.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy