SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Verhey F. R. J.) ;lar1:(gu)"

Sökning: WFRF:(Verhey F. R. J.) > Göteborgs universitet

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sachdev, P. S., et al. (författare)
  • STROKOG (stroke and cognition consortium): An international consortium to examine the epidemiology, diagnosis, and treatment of neurocognitive disorders in relation to cerebrovascular disease
  • 2017
  • Ingår i: Alzheimer's & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 7, s. 11-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction The Stroke and Cognition consortium (STROKOG) aims to facilitate a better understanding of the determinants of vascular contributions to cognitive disorders and help improve the diagnosis and treatment of vascular cognitive disorders (VCD). Methods Longitudinal studies with ≥75 participants who had suffered or were at risk of stroke or TIA and which evaluated cognitive function were invited to join STROKOG. The consortium will facilitate projects investigating rates and patterns of cognitive decline, risk factors for VCD, and biomarkers of vascular dementia. Results Currently, STROKOG includes 25 (21 published) studies, with 12,092 participants from five continents. The duration of follow-up ranges from 3months to 21years. Discussion Although data harmonization will be a key challenge, STROKOG is in a unique position to reuse and combine international cohort data and fully explore patient level characteristics and outcomes. STROKOG could potentially transform our understanding of VCD and have a worldwide impact on promoting better vascular cognitive outcomes. © 2016 The Authors
  •  
2.
  • de Heus, R. A. A., et al. (författare)
  • Blood Pressure Lowering With Nilvadipine in Patients With Mild-to-Moderate Alzheimer Disease Does Not Increase the Prevalence of Orthostatic Hypotension
  • 2019
  • Ingår i: Journal of the American Heart Association. - : Ovid Technologies (Wolters Kluwer Health). - 2047-9980. ; 8:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background-Hypertension is common among patients with Alzheimer disease. Because this group has been excluded from hypertension trials, evidence regarding safety of treatment is lacking. This secondary analysis of a randomized controlled trial assessed whether antihypertensive treatment increases the prevalence of orthostatic hypotension (OH) in patients with Alzheimer disease. Methods and Results-Four hundred seventy-seven patients with mild-to-moderate Alzheimer disease were randomized to the calcium-channel blocker nilvadipine 8 mg/day or placebo for 78 weeks. Presence of OH (blood pressure drop >= 20/>= 10 mm Hg after 1 minute of standing) and OH-related adverse events (dizziness, syncope, falls, and fractures) was determined at 7 follow-up visits. Mean age of the study population was 72.2 +/- 8.2 years and mean Mini-Mental State Examination score was 20.4 +/- 3.8. Baseline blood pressure was 137.8 +/- 14.0/77.0 +/- 8.6 mm Hg. Grade I hypertension was present in 53.4% (n=255). After 13 weeks, blood pressure had fallen by -7.8/-3.9 mm Hg for nilvadipine and by -0.4/-0.8 mm Hg for placebo (P<0.001). Across the 78-week intervention period, there was no difference between groups in the proportion of patients with OH at a study visit (odds ratio [95% CI] 1.1 [0.8-1.5], P 0.62), nor in the proportion of visits where a patient met criteria for OH, corrected for number of visits (7.7 +/- 13.8% versus 7.3 +/- 11.6%). OH-related adverse events were not more often reported in the intervention group compared with placebo. Results were similar for those with baseline hypertension. Conclusions-This study suggests that initiation of a low dose of antihypertensive treatment does not significantly increase the risk of OH in patients with mild-to-moderate Alzheimer disease.
  •  
3.
  • Dyer, A. H., et al. (författare)
  • Cognitive Outcomes of Long-term Benzodiazepine and Related Drug (BDZR) Use in People Living With Mild to Moderate Alzheimer's Disease: Results From NILVAD
  • 2020
  • Ingår i: Journal of the American Medical Directors Association. - : Elsevier BV. - 1525-8610. ; 21:2, s. 194-200
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Benzodiazepines and related drugs (BDZRs) have been associated with an increased risk of Alzheimer's disease (AD) in later life. Despite this, it remains unclear whether ongoing BDZR use may further accelerate cognitive decline in those diagnosed with mild to moderate AD. Design: This study was embedded within NILVAD, a randomized controlled trial of nilvadipine in mild to moderate AD. Cognition was measured at baseline and 18 months using the Alzheimer Disease Assessment Scale, Cognitive Subsection (ADAS-Cog). We assessed predictors of long-term BDZR use and analyzed the effect of ongoing BDZR use on ADAS-Cog scores at 18 months. Additionally, the impact of BDZR use on adverse events, incident delirium, and falls over 18-month follow-up was assessed adjusting for relevant covariates. Setting and Participants: 448 participants with mild to moderate AD recruited from 23 academic centers in 9 European countries. Results: Overall, 14% (62/448) were prescribed an ongoing BDZR for the study duration. Increasing total number of (non-BDZR) medications was associated with a greater likelihood of BDZR prescription (odds ratio 1.16, 95% confidence interval 1.05-1.29). At 18 months, BDZR use was not associated with greater cognitive decline on the ADAS-Cog controlling for baseline ADAS-Cog scores, age, gender, study arm, and other clinical covariates (beta = 1.62, -1.34 to 4.56). However, ongoing BDZR use was associated with a greater likelihood of adverse events [incidence rate ratio (IRR) 1.19, 1.05-1.34], incident delirium (IRR 2.31, 1.45-3.68), and falls (IRR 1.66, 1.02-2.65) over 18 months that persisted after robust adjustment for covariates. Conclusions and Implications: This study found no effect of ongoing BDZR use on ADAS-Cog scores in those with mild to moderate AD over 18 months. However, ongoing use of these medications was associated with an increased risk of adverse events, delirium, and falls. Thus, BDZR use should be avoided where possible and deprescribing interventions should be encouraged in older adults with AD. (C) 2019 AMDA - The Society for Post-Acute and Long-Term Care Medicine.
  •  
4.
  • Janssen, O., et al. (författare)
  • Characteristics of subjective cognitive decline associated with amyloid positivity
  • 2022
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:10, s. 1832-1845
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction The evidence for characteristics of persons with subjective cognitive decline (SCD) associated with amyloid positivity is limited. Methods In 1640 persons with SCD from 20 Amyloid Biomarker Study cohort, we investigated the associations of SCD-specific characteristics (informant confirmation, domain-specific complaints, concerns, feelings of worse performance) demographics, setting, apolipoprotein E gene (APOE) epsilon 4 carriership, and neuropsychiatric symptoms with amyloid positivity. Results Between cohorts, amyloid positivity in 70-year-olds varied from 10% to 76%. Only older age, clinical setting, and APOE epsilon 4 carriership showed univariate associations with increased amyloid positivity. After adjusting for these, lower education was also associated with increased amyloid positivity. Only within a research setting, informant-confirmed complaints, memory complaints, attention/concentration complaints, and no depressive symptoms were associated with increased amyloid positivity. Feelings of worse performance were associated with less amyloid positivity at younger ages and more at older ages. Discussion Next to age, setting, and APOE epsilon 4 carriership, SCD-specific characteristics may facilitate the identification of amyloid-positive individuals.
  •  
5.
  • Lawlor, B., et al. (författare)
  • Nilvadipine in mild to moderate Alzheimer disease: A randomised controlled trial
  • 2018
  • Ingår i: Plos Medicine. - : Public Library of Science (PLoS). - 1549-1676. ; 15:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background This study reports the findings of the first large-scale Phase III investigator-driven clinical trial to slow the rate of cognitive decline in Alzheimer disease with a dihydropyridine (DHP) calcium channel blocker, nilvadipine. Nilvadipine, licensed to treat hypertension, reduces amyloid production, increases regional cerebral blood flow, and has demonstrated antiinflammatory and anti-tau activity in preclinical studies, properties that could have diseasemodifying effects for Alzheimer disease. We aimed to determine if nilvadipine was effective in slowing cognitive decline in subjects with mild to moderate Alzheimer disease. NILVAD was an 18-month, randomised, placebo-controlled, double-blind trial that randomised participants between 15 May 2013 and 13 April 2015. The study was conducted at 23 academic centres in nine European countries. Of 577 participants screened, 511 were eligible and were randomised (258 to placebo, 253 to nilvadipine). Participants took a trial treatment capsule once a day after breakfast for 78 weeks. Participants were aged > 50 years, meeting National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer's disease Criteria (NINCDS-ADRDA) for diagnosis of probable Alzheimer disease, with a Standardised Mini-Mental State Examination (SMMSE) score of >= 12 and < 27. Participants were randomly assigned to 8 mg sustained-release nilvadipine or matched placebo. The a priori defined primary outcome was progression on the Alzheimer's Disease Assessment Scale Cognitive Subscale-12 (ADAS-Cog 12) in the modified intention-to-treat (mITT) population (n = 498), with the Clinical Dementia Rating Scale sum of boxes (CDR-sb) as a gated co-primary outcome, eligible to be promoted to primary end point conditional on a significant effect on the ADAS-Cog 12. The analysis set had a mean age of 73 years and was 62% female. Baseline demographic and Alzheimer disease +/- specific characteristics were similar between treatment groups, with reported mean of 1.7 years since diagnosis and mean SMMSE of 20.4. The prespecified primary analyses failed to show any treatment benefit for nilvadipine on the co-primary outcome (p = 0.465). Decline from baseline in ADASCog 12 on placebo was 0.79 (95% CI, -0.07 +/- 1.64) at 13 weeks, 6.41 (5.33 +/- 7.49) at 52 weeks, and 9.63 (8.33 +/- 10.93) at 78 weeks and on nilvadipine was 0.88 (0.02 +/- 1.74) at 13 weeks, 5.75 (4.66 +/- 6.85) at 52 weeks, and 9.41 (8.09 +/- 10.73) at 78 weeks. Exploratory analyses of the planned secondary outcomes showed no substantial effects, including on the CDR-sb or the Disability Assessment for Dementia. Nilvadipine appeared to be safe and well tolerated. Mortality was similar between groups (3 on nilvadipine, 4 on placebo); higher counts of adverse events (AEs) on nilvadipine (1,129 versus 1,030), and serious adverse events (SAEs; 146 versus 101), were observed. There were 14 withdrawals because of AEs. Major limitations of this study were that subjects had established dementia and the likelihood that non-Alzheimer subjects were included because of the lack of biomarker confirmation of the presence of brain amyloid. The results do not suggest benefit of nilvadipine as a treatment in a population spanning mild to moderate Alzheimer disease.
  •  
6.
  • ten Kate, M., et al. (författare)
  • MRI predictors of amyloid pathology: results from the EMIF-AD Multimodal Biomarker Discovery study
  • 2018
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: With the shift of research focus towards the pre-dementia stage of Alzheimer's disease (AD), there is an urgent need for reliable, non-invasive biomarkers to predict amyloid pathology. The aim of this study was to assess whether easily obtainable measures from structural MRI, combined with demographic data, cognitive data and apolipoprotein E (APOE) epsilon 4 genotype, can be used to predict amyloid pathology using machine-learning classification. Methods: We examined 810 subjects with structural MRI data and amyloid markers from the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery study, including subjects with normal cognition (CN, n = 337, age 66.5 +/- 72, 50% female, 27% amyloid positive), mild cognitive impairment (MCI, n = 375, age 69. 1 +/- 7.5, 53% female, 63% amyloid positive) and AD dementia (n = 98, age 67.0 +/- 7.7, 48% female, 97% amyloid positive). Structural MRI scans were visually assessed and Freesurfer was used to obtain subcortical volumes, cortical thickness and surface area measures. We first assessed univariate associations between MRI measures and amyloid pathology using mixed models. Next, we developed and tested an automated classifier using demographic, cognitive, MRI and APOE epsilon 4 information to predict amyloid pathology. A support vector machine (SVM) with nested 10-fold cross-validation was applied to identify a set of markers best discriminating between amyloid positive and amyloid negative subjects. Results: In univariate associations, amyloid pathology was associated with lower subcortical volumes and thinner cortex in AD-signature regions in CN and MCI. The multi-variable SVM classifier provided an area under the curve (AUC) of 0.81 +/- O. 07 in MCI and an AUC of 0.74 +/- 0.08 in CN. In CN, selected features for the classifier included APOE epsilon 4, age, memory scores and several MRI measures such as hippocampus, amygdala and accumbens volumes and cortical thickness in temporal and parahippocampal regions. In MCI, the classifier including demographic and APOE epsilon 4 information did not improve after additionally adding imaging measures. Conclusions: Amyloid pathology is associated with changes in structural MRI measures in CN and MCI. An automated classifier based on clinical, imaging and APOE epsilon 4 data can identify the presence of amyloid pathology with a moderate level of accuracy. These results could be used in clinical trials to pre-screen subjects for anti-amyloid therapies.
  •  
7.
  • Vermunt, L., et al. (författare)
  • Duration of preclinical, prodromal, and dementia stages of Alzheimer's disease in relation to age, sex, and APOE genotype
  • 2019
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 15:7, s. 888-898
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: We estimated the age-specific duration of the preclinical, prodromal, and dementia stages of Alzheimer's disease (AD) and the influence of sex, setting, apolipoprotein E (APOE) genotype, and cerebrospinal fluid tau on disease duration. Methods: We performed multistate modeling in a combined sample of 6 cohorts (n = 3268) with death as the end stage and estimated the preclinical, prodromal, and dementia stage duration. Results: The overall AD duration varied between 24 years (age 60) and 15 years (age 80). For individuals presenting with preclinical AD, age 70, the estimated preclinical AD duration was 10 years, prodromal AD 4 years, and dementia 6 years. Male sex, clinical setting, APOE epsilon 4 allele carriership, and abnormal cerebrospinal fluid tau were associated with a shorter duration, and these effects depended on disease stage. Discussion: Estimates of AD disease duration become more accurate if age, sex, setting, APOE, and cerebrospinal fluid tau are taken into account. This will be relevant for clinical practice and trial design. (C) 2019 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
  •  
8.
  • Tijms, B. M., et al. (författare)
  • Pathophysiological subtypes of Alzheimer's disease based on cerebrospinal fluid proteomics
  • 2020
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 143, s. 3776-3792
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease is biologically heterogeneous, and detailed understanding of the processes involved in patients is critical for development of treatments. CSF contains hundreds of proteins, with concentrations reflecting ongoing (patho)physiological processes. This provides the opportunity to study many biological processes at the same time in patients. We studied whether Alzheimer's disease biological subtypes can be detected in CSF proteomics using the dual clustering technique non-negative matrix factorization. In two independent cohorts (EMIF-AD MBD and ADNI) we found that 705 (77% of 911 tested) proteins differed between Alzheimer's disease (defined as having abnormal amyloid, n=425) and controls (defined as having normal CSF amyloid and tau and normal cognition, n=127). Using these proteins for data-driven clustering, we identified three robust pathophysiological Alzheimer's disease subtypes within each cohort showing (i) hyperplasticity and increased BACE1 levels; (ii) innate immune activation; and (iii) blood-brain barrier dysfunction with low BACE1 levels. In both cohorts, the majority of individuals were labelled as having subtype 1 (80, 36% in EMIF-AD MBD; 117, 59% in ADNI), 71 (32%) in EMIF-AD MBD and 41 (21%) in ADNI were labelled as subtype 2, and 72 (32%) in EMIF-AD MBD and 39 (20%) individuals in ADNI were labelled as subtype 3. Genetic analyses showed that all subtypes had an excess of genetic risk for Alzheimer's disease (all P>0.01). Additional pathological comparisons that were available for a subset in ADNI suggested that subtypes showed similar severity of Alzheimer's disease pathology, and did not differ in the frequencies of co-pathologies, providing further support that found subtypes truly reflect Alzheimer's disease heterogeneity. Compared to controls, all non-demented Alzheimer's disease individuals had increased risk of showing clinical progression (all P<0.01). Compared to subtype 1, subtype 2 showed faster clinical progression after correcting for age, sex, level of education and tau levels (hazard ratio = 2.5; 95% confidence interval = 1.2, 5.1; P=0.01), and subtype 3 at trend level (hazard ratio = 2.1; 95% confidence interval = 1.0, 4.4; P=0.06). Together, these results demonstrate the value of CSF proteomics in studying the biological heterogeneity in Alzheimer's disease patients, and suggest that subtypes may require tailored therapy.
  •  
9.
  • Neumann, A., et al. (författare)
  • Rare variants in IFFO1, DTNB, NLRC3 and SLC22A10 associate with Alzheimer's disease CSF profile of neuronal injury and inflammation
  • 2022
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 27, s. 1990-1999
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) biomarkers represent several neurodegenerative processes, such as synaptic dysfunction, neuronal inflammation and injury, as well as amyloid pathology. We performed an exome-wide rare variant analysis of six AD biomarkers (beta-amyloid, total/phosphorylated tau, NfL, YKL-40, and Neurogranin) to discover genes associated with these markers. Genetic and biomarker information was available for 480 participants from two studies: EMIF-AD and ADNI. We applied a principal component (PC) analysis to derive biomarkers combinations, which represent statistically independent biological processes. We then tested whether rare variants in 9576 protein-coding genes associate with these PCs using a Meta-SKAT test. We also tested whether the PCs are intermediary to gene effects on AD symptoms with a SMUT test. One PC loaded on NfL and YKL-40, indicators of neuronal injury and inflammation. Four genes were associated with this PC: IFFO1, DTNB, NLRC3, and SLC22A10. Mediation tests suggest, that these genes also affect dementia symptoms via inflammation/injury. We also observed an association between a PC loading on Neurogranin, a marker for synaptic functioning, with GABBR2 and CASZ1, but no mediation effects. The results suggest that rare variants in IFFO1, DTNB, NLRC3, and SLC22A10 heighten susceptibility to neuronal injury and inflammation, potentially by altering cytoskeleton structure and immune activity disinhibition, resulting in an elevated dementia risk. GABBR2 and CASZ1 were associated with synaptic functioning, but mediation analyses suggest that the effect of these two genes on synaptic functioning is not consequential for AD development.
  •  
10.
  • Visser, P. J., et al. (författare)
  • Cerebrospinal fluid tau levels are associated with abnormal neuronal plasticity markers in Alzheimer's disease
  • 2022
  • Ingår i: Molecular Neurodegeneration. - : Springer Science and Business Media LLC. - 1750-1326. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Increased total tau (t-tau) in cerebrospinal fluid (CSF) is a key characteristic of Alzheimer's disease (AD) and is considered to result from neurodegeneration. T-tau levels, however, can be increased in very early disease stages, when neurodegeneration is limited, and can be normal in advanced disease stages. This suggests that t-tau levels may be driven by other mechanisms as well. Because tau pathophysiology is emerging as treatment target for AD, we aimed to clarify molecular processes associated with CSF t-tau levels. Methods We performed a proteomic, genomic, and imaging study in 1380 individuals with AD, in the preclinical, prodromal, and mild dementia stage, and 380 controls from the Alzheimer's Disease Neuroimaging Initiative and EMIF-AD Multimodality Biomarker Discovery study. Results We found that, relative to controls, AD individuals with increased t-tau had increased CSF concentrations of over 400 proteins enriched for neuronal plasticity processes. In contrast, AD individuals with normal t-tau had decreased levels of these plasticity proteins and showed increased concentrations of proteins indicative of blood-brain barrier and blood-CSF barrier dysfunction, relative to controls. The distinct proteomic profiles were already present in the preclinical AD stage and persisted in prodromal and dementia stages implying that they reflect disease traits rather than disease states. Dysregulated plasticity proteins were associated with SUZ12 and REST signaling, suggesting aberrant gene repression. GWAS analyses contrasting AD individuals with and without increased t-tau highlighted several genes involved in the regulation of gene expression. Targeted analyses of SNP rs9877502 in GMNC, associated with t-tau levels previously, correlated in individuals with AD with CSF concentrations of 591 plasticity associated proteins. The number of APOE-e4 alleles, however, was not associated with the concentration of plasticity related proteins. Conclusions CSF t-tau levels in AD are associated with altered levels of proteins involved in neuronal plasticity and blood-brain and blood-CSF barrier dysfunction. Future trials may need to stratify on CSF t-tau status, as AD individuals with increased t-tau and normal t-tau are likely to respond differently to treatment, given their opposite CSF proteomic profiles.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy