1. |
|
|
2. |
|
|
3. |
|
|
4. |
|
|
5. |
|
|
6. |
- Gruzieva, O, et al.
(författare)
-
Air pollution, metabolites and respiratory health across the life-course
- 2022
-
Ingår i: European respiratory review : an official journal of the European Respiratory Society. - : European Respiratory Society (ERS). - 1600-0617. ; 31:165
-
Tidskriftsartikel (refereegranskat)abstract
- Previous studies have explored the relationships of air pollution and metabolic profiles with lung function. However, the metabolites linking air pollution and lung function and the associated mechanisms have not been reviewed from a life-course perspective. Here, we provide a narrative review summarising recent evidence on the associations of metabolic profiles with air pollution exposure and lung function in children and adults. Twenty-six studies identified through a systematic PubMed search were included with 10 studies analysing air pollution-related metabolic profiles and 16 studies analysing lung function-related metabolic profiles. A wide range of metabolites were associated with short- and long-term exposure, partly overlapping with those linked to lung function in the general population and with respiratory diseases such as asthma and COPD. The existing studies show that metabolomics offers the potential to identify biomarkers linked to both environmental exposures and respiratory outcomes, but many studies suffer from small sample sizes, cross-sectional designs, a preponderance on adult lung function, heterogeneity in exposure assessment, lack of confounding control and omics integration. The ongoing EXposome Powered tools for healthy living in urbAN Settings (EXPANSE) project aims to address some of these shortcomings by combining biospecimens from large European cohorts and harmonised air pollution exposure and exposome data.
|
|
7. |
|
|
8. |
- Law, PJ, et al.
(författare)
-
Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia
- 2017
-
Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8, s. 14175-
-
Tidskriftsartikel (refereegranskat)abstract
- Several chronic lymphocytic leukaemia (CLL) susceptibility loci have been reported; however, much of the heritable risk remains unidentified. Here we perform a meta-analysis of six genome-wide association studies, imputed using a merged reference panel of 1,000 Genomes and UK10K data, totalling 6,200 cases and 17,598 controls after replication. We identify nine risk loci at 1p36.11 (rs34676223, P=5.04 × 10−13), 1q42.13 (rs41271473, P=1.06 × 10−10), 4q24 (rs71597109, P=1.37 × 10−10), 4q35.1 (rs57214277, P=3.69 × 10−8), 6p21.31 (rs3800461, P=1.97 × 10−8), 11q23.2 (rs61904987, P=2.64 × 10−11), 18q21.1 (rs1036935, P=3.27 × 10−8), 19p13.3 (rs7254272, P=4.67 × 10−8) and 22q13.33 (rs140522, P=2.70 × 10−9). These new and established risk loci map to areas of active chromatin and show an over-representation of transcription factor binding for the key determinants of B-cell development and immune response.
|
|
9. |
- McMaster, ML, et al.
(författare)
-
Two high-risk susceptibility loci at 6p25.3 and 14q32.13 for Waldenström macroglobulinemia
- 2018
-
Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1, s. 4182-
-
Tidskriftsartikel (refereegranskat)abstract
- Waldenström macroglobulinemia (WM)/lymphoplasmacytic lymphoma (LPL) is a rare, chronic B-cell lymphoma with high heritability. We conduct a two-stage genome-wide association study of WM/LPL in 530 unrelated cases and 4362 controls of European ancestry and identify two high-risk loci associated with WM/LPL at 6p25.3 (rs116446171, near EXOC2 and IRF4; OR = 21.14, 95% CI: 14.40–31.03, P = 1.36 × 10−54) and 14q32.13 (rs117410836, near TCL1; OR = 4.90, 95% CI: 3.45–6.96, P = 8.75 × 10−19). Both risk alleles are observed at a low frequency among controls (~2–3%) and occur in excess in affected cases within families. In silico data suggest that rs116446171 may have functional importance, and in functional studies, we demonstrate increased reporter transcription and proliferation in cells transduced with the 6p25.3 risk allele. Although further studies are needed to fully elucidate underlying biological mechanisms, together these loci explain 4% of the familial risk and provide insights into genetic susceptibility to this malignancy.
|
|
10. |
|
|