SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vidal Pineiro Didac) "

Sökning: WFRF:(Vidal Pineiro Didac)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fjell, Anders M., et al. (författare)
  • Poor Self-Reported Sleep is Related to Regional Cortical Thinning in Aging but not Memory Decline-Results From the Lifebrain Consortium
  • 2021
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 31:4, s. 1953-1969
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined whether sleep quality and quantity are associated with cortical and memory changes in cognitively healthy participants across the adult lifespan. Associations between self-reported sleep parameters (Pittsburgh Sleep Quality Index, PSQI) and longitudinal cortical change were tested using five samples from the Lifebrain consortium (n = 2205, 4363 MRIs, 18-92 years). In additional analyses, we tested coherence with cell-specific gene expression maps from the Allen Human Brain Atlas, and relations to changes in memory performance. "PSQI # 1 Subjective sleep quality" and "PSQI #5 Sleep disturbances" were related to thinning of the right lateral temporal cortex, with lower quality and more disturbances being associated with faster thinning. The association with "PSQI #5 Sleep disturbances" emerged after 60 years, especially in regions with high expression of genes related to oligodendrocytes and S1 pyramidal neurons. None of the sleep scales were related to a longitudinal change in episodic memory function, suggesting that sleep-related cortical changes were independent of cognitive decline. The relationship to cortical brain change suggests that self-reported sleep parameters are relevant in lifespan studies, but small effect sizes indicate that self-reported sleep is not a good biomarker of general cortical degeneration in healthy older adults.
  •  
2.
  • Fjell, Anders M., et al. (författare)
  • Is short sleep bad for the brain? : Brain structure and cognitive function in short sleepers
  • 2023
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 43:28, s. 5241-5250
  • Tidskriftsartikel (refereegranskat)abstract
    • Many sleep less than recommended without experiencing daytime sleepiness. According to prevailing views, short sleep increases risk of lower brain health and cognitive function. Chronic mild sleep deprivation could cause undetected sleep debt, negatively affecting cognitive function and brain health. However, it is possible that some have less sleep need and are more resistant to negative effects of sleep loss. We investigated this using a cross-sectional and longitudinal sample of 47,029 participants of both sexes (20-89 years) from the Lifebrain consortium, Human Connectome project (HCP) and UK Biobank (UKB), with measures of self-reported sleep, including 51,295 MRIs of the brain and cognitive tests. A total of 740 participants who reported to sleep <6 h did not experience daytime sleepiness or sleep problems/disturbances interfering with falling or staying asleep. These short sleepers showed significantly larger regional brain volumes than both short sleepers with daytime sleepiness and sleep problems (n = 1742) and participants sleeping the recommended 7-8 h (n = 3886). However, both groups of short sleepers showed slightly lower general cognitive function (GCA), 0.16 and 0.19 SDs, respectively. Analyses using accelerometer-estimated sleep duration confirmed the findings, and the associations remained after controlling for body mass index, depression symptoms, income, and education. The results suggest that some people can cope with less sleep without obvious negative associations with brain morphometry and that sleepiness and sleep problems may be more related to brain structural differences than duration. However, the slightly lower performance on tests of general cognitive abilities warrants closer examination in natural settings.SIGNIFICANCE STATEMENT: Short habitual sleep is prevalent, with unknown consequences for brain health and cognitive performance. Here, we show that daytime sleepiness and sleep problems are more strongly related to regional brain volumes than sleep duration. However, participants sleeping ≤6 h had slightly lower scores on tests of general cognitive function (GCA). This indicates that sleep need is individual and that sleep duration per se is very weakly if at all related brain health, while daytime sleepiness and sleep problems may show somewhat stronger associations. The association between habitual short sleep and lower scores on tests of general cognitive abilities must be further scrutinized in natural settings.
  •  
3.
  • Fjell, Anders M., et al. (författare)
  • No phenotypic or genotypic evidence for a link between sleep duration and brain atrophy
  • 2023
  • Ingår i: Nature Human Behaviour. - : Springer Nature. - 2397-3374. ; 7:11, s. 2008-2022
  • Tidskriftsartikel (refereegranskat)abstract
    • Short sleep is held to cause poorer brain health, but is short sleep associated with higher rates of brain structural decline? Analysing 8,153 longitudinal MRIs from 3,893 healthy adults, we found no evidence for an association between sleep duration and brain atrophy. In contrast, cross-sectional analyses (51,295 observations) showed inverse U-shaped relationships, where a duration of 6.5 (95% confidence interval, (5.7, 7.3)) hours was associated with the thickest cortex and largest volumes relative to intracranial volume. This fits converging evidence from research on mortality, health and cognition that points to roughly seven hours being associated with good health. Genome-wide association analyses suggested that genes associated with longer sleep for below-average sleepers were linked to shorter sleep for above-average sleepers. Mendelian randomization did not yield evidence for causal impacts of sleep on brain structure. The combined results challenge the notion that habitual short sleep causes brain atrophy, suggesting that normal brains promote adequate sleep duration—which is shorter than current recommendations.
  •  
4.
  • Halaas, Nathalie Bodd, et al. (författare)
  • CSF sTREM2 and Tau Work Together in Predicting Increased Temporal Lobe Atrophy in Older Adults.
  • 2020
  • Ingår i: Cerebral cortex (New York, N.Y. : 1991). - : Oxford University Press (OUP). - 1460-2199 .- 1047-3211. ; 30:4, s. 2295-2306
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroinflammation may be a key factor in brain atrophy in aging and age-related neurodegenerative disease. The objective of this study was to test the association between microglial expression of soluble Triggering Receptor Expressed on Myeloid Cells 2 (sTREM2), as a measure of neuroinflammation, and brain atrophy in cognitively unimpaired older adults. Brain magnetic resonance imagings (MRIs) and cerebrospinal fluid (CSF) sTREM2, total tau (t-tau), phosphorylated181 tau (p-tau), and Aβ42 were analyzed in 115 cognitively unimpaired older adults, classified according to the A/T/(N)-framework. MRIs were repeated after 2 (n = 95) and 4 (n = 62) years. High baseline sTREM2 was associated with accelerated cortical thinning in the temporal cortex of the left hemisphere, as well as bilateral hippocampal atrophy, independently of age, Aβ42, and tau. sTREM2-related atrophy only marginally increased with biomarker positivity across the AD continuum (A-T- #x2292; A+T- #x2292; A+T+) but was significantly stronger in participants with a high level of p-tau (T+). sTREM2-related cortical thinning correlated significantly with areas of high microglial-specific gene expression in the Allen Human Brain Atlas. In conclusion, increased CSF sTREM2 was associated with accelerated cortical and hippocampal atrophy in cognitively unimpaired older participants, particularly in individuals with tau pathology. This suggests a link between neuroinflammation, neurodegeneration, and amyloid-independent tauopathy.
  •  
5.
  • Mijalkov, Mite, et al. (författare)
  • Sex differences in multilayer functional network topology over the course of aging in 37543 UK Biobank participants
  • 2023
  • Ingår i: Network Neuroscience. - : MIT Press. - 2472-1751. ; 7:1, s. 351-376
  • Tidskriftsartikel (refereegranskat)abstract
    • Aging is a major risk factor for cardiovascular and neurodegenerative disorders, with considerable societal and economic implications. Healthy aging is accompanied by changes in functional connectivity between and within resting-state functional networks, which have been associated with cognitive decline. However, there is no consensus on the impact of sex on these age-related functional trajectories. Here, we show that multilayer measures provide crucial information on the interaction between sex and age on network topology, allowing for better assessment of cognitive, structural, and cardiovascular risk factors that have been shown to differ between men and women, as well as providing additional insights into the genetic influences on changes in functional connectivity that occur during aging. In a large crosssectional sample of 37,543 individuals from the UK Biobank cohort, we demonstrate that such multilayer measures that capture the relationship between positive and negative connections are more sensitive to sex-related changes in the whole-brain connectivity patterns and their topological architecture throughout aging, when compared to standard connectivity and topological measures. Our findings indicate that multilayer measures contain previously unknown information on the relationship between sex and age, which opens up new avenues for research into functional brain connectivity in aging.
  •  
6.
  • Ness, Hedda T., et al. (författare)
  • Reduced Hippocampal-Striatal Interactions during Formation of Durable Episodic Memories in Aging
  • 2022
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 32:11, s. 2358-2372
  • Tidskriftsartikel (refereegranskat)abstract
    • Encoding of durable episodic memories requires cross-talk between the hippocampus and multiple brain regions. Changes in these hippocampal interactions could contribute to age-related declines in the ability to form memories that can be retrieved after extended time intervals. Here we tested whether hippocampal-neocortical- and subcortical functional connectivity (FC) observed during encoding of durable episodic memories differed between younger and older adults. About 48 younger (20-38 years; 25 females) and 43 older (60-80 years; 25 females) adults were scanned with fMRI while performing an associative memory encoding task. Source memory was tested ~20 min and ~6 days postencoding. Associations recalled after 20 min but later forgotten were classified as transient, whereas memories retained after long delays were classified as durable. Results demonstrated that older adults showed a reduced ability to form durable memories and reduced hippocampal-caudate FC during encoding of durable memories. There was also a positive relationship between hippocampal-caudate FC and higher memory performance among the older adults. No reliable age group differences in durable memory-encoding activity or hippocampal-neocortical connectivity were observed. These results support the classic theory of striatal alterations as one cause of cognitive decline in aging and highlight that age-related changes in episodic memory extend beyond hippocampal-neocortical connections.
  •  
7.
  • Roe, James M., et al. (författare)
  • Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer’s disease
  • 2021
  • Ingår i: Nature Communications. - : Nature Research. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Aging and Alzheimer’s disease (AD) are associated with progressive brain disorganization. Although structural asymmetry is an organizing feature of the cerebral cortex it is unknown whether continuous age- and AD-related cortical degradation alters cortical asymmetry. Here, in multiple longitudinal adult lifespan cohorts we show that higher-order cortical regions exhibiting pronounced asymmetry at age ~20 also show progressive asymmetry-loss across the adult lifespan. Hence, accelerated thinning of the (previously) thicker homotopic hemisphere is a feature of aging. This organizational principle showed high consistency across cohorts in the Lifebrain consortium, and both the topological patterns and temporal dynamics of asymmetry-loss were markedly similar across replicating samples. Asymmetry-change was further accelerated in AD. Results suggest a system-wide dedifferentiation of the adaptive asymmetric organization of heteromodal cortex in aging and AD.
  •  
8.
  • Vidal-Pineiro, Didac, et al. (författare)
  • Individual variations in 'brain age' relate to early-life factors more than to longitudinal brain change
  • 2021
  • Ingår i: eLIFE. - : eLife Sciences Publications. - 2050-084X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain age is a widely used index for quantifying individuals’ brain health as deviation from a normative brain aging trajectory. Higher-than-expected brain age is thought partially to reflect above-average rate of brain aging. Here, we explicitly tested this assumption in two indepen-dent large test datasets (UK Biobank [main] and Lifebrain [replication]; longitudinal observations ≈ 2750 and 4200) by assessing the relationship between cross-sectional and longitudinal estimates of brain age. Brain age models were estimated in two different training datasets (n ≈ 38,000 [main] and 1800 individuals [replication]) based on brain structural features. The results showed no association between cross-sectional brain age and the rate of brain change measured longitudinally. Rather, brain age in adulthood was associated with the congenital factors of birth weight and polygenic scores of brain age, assumed to reflect a constant, lifelong influence on brain structure from early life. The results call for nuanced interpretations of cross-sectional indices of the aging brain and question their validity as markers of ongoing within-person changes of the aging brain. Longitudinal imaging data should be preferred whenever the goal is to understand individual change trajectories of brain and cognition in aging.
  •  
9.
  • Vidal-Pineiro, Didac, et al. (författare)
  • Maintained Frontal Activity Underlies High Memory Function Over 8 Years in Aging
  • 2019
  • Ingår i: Cerebral Cortex. - : OXFORD UNIV PRESS INC. - 1047-3211 .- 1460-2199. ; 29:7, s. 3111-3123
  • Tidskriftsartikel (refereegranskat)abstract
    • Aging is characterized by substantial average decline in memory performance. Yet contradictory explanations have been given for how the brains of high-performing older adults work: either by engagement of compensatory processes such as recruitment of additional networks or by maintaining young adults' patterns of activity. Distinguishing these components requires large experimental samples and longitudinal follow-up. Here, we investigate which features are key to high memory in aging, directly testing these hypotheses by studying a large sample of adult participants (n > 300) with fMRI during an episodic memory experiment where item-context relationships were implicitly encoded. The analyses revealed that low levels of activity in frontal networks-known to be involved in memory encoding-were associated with low memory performance in the older adults only. Importantly, older participants with low memory performance and low frontal activity exhibited a strong longitudinal memory decline in an independent verbal episodic memory task spanning 8 years back (n = 52). These participants were also characterized by lower hippocampal volumes and steeper rates of cortical atrophy. Altogether, maintenance of frontal brain function during encoding seems to be a primary characteristic of preservation of memory function in aging, likely reflecting intact ability to integrate information.
  •  
10.
  • Vidal-Piñeiro, Didac, et al. (författare)
  • The Functional Foundations of Episodic Memory Remain Stable Throughout the Lifespan
  • 2021
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 31:4, s. 2098-2110
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been suggested that specific forms of cognition in older age rely largely on late-life specific mechanisms. Here instead, we tested using task-fMRI (n = 540, age 6-82 years) whether the functional foundations of successful episodic memory encoding adhere to a principle of lifespan continuity, shaped by developmental, structural, and evolutionary influences. We clustered regions of the cerebral cortex according to the shape of the lifespan trajectory of memory activity in each region so that regions showing the same pattern were clustered together. The results revealed that lifespan trajectories of memory encoding function showed a continuity through life but no evidence of age-specific mechanisms such as compensatory patterns. Encoding activity was related to general cognitive abilities and variations of grey matter as captured by a multi-modal independent component analysis, variables reflecting core aspects of cognitive and structural change throughout the lifespan. Furthermore, memory encoding activity aligned to fundamental aspects of brain organization, such as large-scale connectivity and evolutionary cortical expansion gradients. Altogether, we provide novel support for a perspective on memory aging in which maintenance and decay of episodic memory in older age needs to be understood from a comprehensive life-long perspective rather than as a late-life phenomenon only.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
Typ av publikation
tidskriftsartikel (11)
Typ av innehåll
refereegranskat (11)
Författare/redaktör
Vidal-Piñeiro, Didac (11)
Fjell, Anders M. (9)
Walhovd, Kristine B. (9)
Nyberg, Lars, 1966- (8)
Sørensen, Øystein (7)
Mowinckel, Athanasia ... (6)
visa fler...
Kühn, Simone (6)
Amlien, Inge K. (6)
Brandmaier, Andreas ... (5)
Bartrés-Faz, David (5)
Watne, Leiv Otto (4)
Lindenberger, Ulman (4)
Drevon, Christian A. (4)
Ebmeier, Klaus P. (4)
Wang, Yunpeng (4)
Ghisletta, Paolo (4)
Zsoldos, Eniko (3)
Boraxbekk, Carl-Joha ... (3)
Düzel, Sandra (3)
Madsen, Kathrine Ska ... (3)
Solé-Padullés, Crist ... (3)
Demuth, Ilja (3)
Wagner, Gerd (3)
Kievit, Rogier A. (3)
Bertram, Lars (2)
Baaré, William F.C. (2)
Suri, Sana (2)
Kievit, Rogier (2)
Idland, Ane-Victoria (2)
Sexton, Claire E. (2)
Blennow, Kaj, 1958 (1)
Zetterberg, Henrik, ... (1)
Pereira, Joana B (1)
Ebmeier, Klaus (1)
Mijalkov, Mite (1)
Volpe, Giovanni, 197 ... (1)
Romeo, Stefano, 1976 (1)
Smith, Stephen M. (1)
Pudas, Sara, Docent, ... (1)
Penninx, Brenda (1)
Jamialahmadi, Oveis (1)
Knights, Ethan (1)
Nilsson, Lars NG (1)
Park, Denise C. (1)
Canal-Garcia, Anna (1)
Vereb, Daniel (1)
Gomez-Ruiz, Emiliano (1)
Walhovd, Kristine Be ... (1)
Buchmann, Nikolaus (1)
Kietzmann, Tim C. (1)
visa färre...
Lärosäte
Umeå universitet (9)
Göteborgs universitet (1)
Lunds universitet (1)
Karolinska Institutet (1)
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (10)
Samhällsvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy