SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vidal Pineiro Didac) "

Sökning: WFRF:(Vidal Pineiro Didac)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fjell, Anders M., et al. (författare)
  • Poor Self-Reported Sleep is Related to Regional Cortical Thinning in Aging but not Memory Decline-Results From the Lifebrain Consortium
  • 2021
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 31:4, s. 1953-1969
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined whether sleep quality and quantity are associated with cortical and memory changes in cognitively healthy participants across the adult lifespan. Associations between self-reported sleep parameters (Pittsburgh Sleep Quality Index, PSQI) and longitudinal cortical change were tested using five samples from the Lifebrain consortium (n = 2205, 4363 MRIs, 18-92 years). In additional analyses, we tested coherence with cell-specific gene expression maps from the Allen Human Brain Atlas, and relations to changes in memory performance. "PSQI # 1 Subjective sleep quality" and "PSQI #5 Sleep disturbances" were related to thinning of the right lateral temporal cortex, with lower quality and more disturbances being associated with faster thinning. The association with "PSQI #5 Sleep disturbances" emerged after 60 years, especially in regions with high expression of genes related to oligodendrocytes and S1 pyramidal neurons. None of the sleep scales were related to a longitudinal change in episodic memory function, suggesting that sleep-related cortical changes were independent of cognitive decline. The relationship to cortical brain change suggests that self-reported sleep parameters are relevant in lifespan studies, but small effect sizes indicate that self-reported sleep is not a good biomarker of general cortical degeneration in healthy older adults.
  •  
2.
  • Halaas, Nathalie Bodd, et al. (författare)
  • CSF sTREM2 and Tau Work Together in Predicting Increased Temporal Lobe Atrophy in Older Adults.
  • 2020
  • Ingår i: Cerebral cortex (New York, N.Y. : 1991). - 1460-2199. ; 30:4, s. 2295-2306
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroinflammation may be a key factor in brain atrophy in aging and age-related neurodegenerative disease. The objective of this study was to test the association between microglial expression of soluble Triggering Receptor Expressed on Myeloid Cells 2 (sTREM2), as a measure of neuroinflammation, and brain atrophy in cognitively unimpaired older adults. Brain magnetic resonance imagings (MRIs) and cerebrospinal fluid (CSF) sTREM2, total tau (t-tau), phosphorylated181 tau (p-tau), and Aβ42 were analyzed in 115 cognitively unimpaired older adults, classified according to the A/T/(N)-framework. MRIs were repeated after 2 (n = 95) and 4 (n = 62) years. High baseline sTREM2 was associated with accelerated cortical thinning in the temporal cortex of the left hemisphere, as well as bilateral hippocampal atrophy, independently of age, Aβ42, and tau. sTREM2-related atrophy only marginally increased with biomarker positivity across the AD continuum (A-T- #x2292; A+T- #x2292; A+T+) but was significantly stronger in participants with a high level of p-tau (T+). sTREM2-related cortical thinning correlated significantly with areas of high microglial-specific gene expression in the Allen Human Brain Atlas. In conclusion, increased CSF sTREM2 was associated with accelerated cortical and hippocampal atrophy in cognitively unimpaired older participants, particularly in individuals with tau pathology. This suggests a link between neuroinflammation, neurodegeneration, and amyloid-independent tauopathy.
  •  
3.
  • Roe, James M., et al. (författare)
  • Asymmetric thinning of the cerebral cortex across the adult lifespan is accelerated in Alzheimer’s disease
  • 2021
  • Ingår i: Nature Communications. - : Nature Research. - 2041-1723 .- 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Aging and Alzheimer’s disease (AD) are associated with progressive brain disorganization. Although structural asymmetry is an organizing feature of the cerebral cortex it is unknown whether continuous age- and AD-related cortical degradation alters cortical asymmetry. Here, in multiple longitudinal adult lifespan cohorts we show that higher-order cortical regions exhibiting pronounced asymmetry at age ~20 also show progressive asymmetry-loss across the adult lifespan. Hence, accelerated thinning of the (previously) thicker homotopic hemisphere is a feature of aging. This organizational principle showed high consistency across cohorts in the Lifebrain consortium, and both the topological patterns and temporal dynamics of asymmetry-loss were markedly similar across replicating samples. Asymmetry-change was further accelerated in AD. Results suggest a system-wide dedifferentiation of the adaptive asymmetric organization of heteromodal cortex in aging and AD.
  •  
4.
  • Vidal-Pineiro, Didac, et al. (författare)
  • Individual variations in 'brain age' relate to early-life factors more than to longitudinal brain change
  • 2021
  • Ingår i: eLIFE. - : eLife Sciences Publications. - 2050-084X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Brain age is a widely used index for quantifying individuals’ brain health as deviation from a normative brain aging trajectory. Higher-than-expected brain age is thought partially to reflect above-average rate of brain aging. Here, we explicitly tested this assumption in two indepen-dent large test datasets (UK Biobank [main] and Lifebrain [replication]; longitudinal observations ≈ 2750 and 4200) by assessing the relationship between cross-sectional and longitudinal estimates of brain age. Brain age models were estimated in two different training datasets (n ≈ 38,000 [main] and 1800 individuals [replication]) based on brain structural features. The results showed no association between cross-sectional brain age and the rate of brain change measured longitudinally. Rather, brain age in adulthood was associated with the congenital factors of birth weight and polygenic scores of brain age, assumed to reflect a constant, lifelong influence on brain structure from early life. The results call for nuanced interpretations of cross-sectional indices of the aging brain and question their validity as markers of ongoing within-person changes of the aging brain. Longitudinal imaging data should be preferred whenever the goal is to understand individual change trajectories of brain and cognition in aging.
  •  
5.
  • Vidal-Pineiro, Didac, et al. (författare)
  • Maintained Frontal Activity Underlies High Memory Function Over 8 Years in Aging
  • 2019
  • Ingår i: Cerebral Cortex. - : OXFORD UNIV PRESS INC. - 1047-3211 .- 1460-2199. ; 29:7, s. 3111-3123
  • Tidskriftsartikel (refereegranskat)abstract
    • Aging is characterized by substantial average decline in memory performance. Yet contradictory explanations have been given for how the brains of high-performing older adults work: either by engagement of compensatory processes such as recruitment of additional networks or by maintaining young adults' patterns of activity. Distinguishing these components requires large experimental samples and longitudinal follow-up. Here, we investigate which features are key to high memory in aging, directly testing these hypotheses by studying a large sample of adult participants (n > 300) with fMRI during an episodic memory experiment where item-context relationships were implicitly encoded. The analyses revealed that low levels of activity in frontal networks-known to be involved in memory encoding-were associated with low memory performance in the older adults only. Importantly, older participants with low memory performance and low frontal activity exhibited a strong longitudinal memory decline in an independent verbal episodic memory task spanning 8 years back (n = 52). These participants were also characterized by lower hippocampal volumes and steeper rates of cortical atrophy. Altogether, maintenance of frontal brain function during encoding seems to be a primary characteristic of preservation of memory function in aging, likely reflecting intact ability to integrate information.
  •  
6.
  • Vidal-Piñeiro, Didac, et al. (författare)
  • The Functional Foundations of Episodic Memory Remain Stable Throughout the Lifespan
  • 2021
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 31:4, s. 2098-2110
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been suggested that specific forms of cognition in older age rely largely on late-life specific mechanisms. Here instead, we tested using task-fMRI (n = 540, age 6-82 years) whether the functional foundations of successful episodic memory encoding adhere to a principle of lifespan continuity, shaped by developmental, structural, and evolutionary influences. We clustered regions of the cerebral cortex according to the shape of the lifespan trajectory of memory activity in each region so that regions showing the same pattern were clustered together. The results revealed that lifespan trajectories of memory encoding function showed a continuity through life but no evidence of age-specific mechanisms such as compensatory patterns. Encoding activity was related to general cognitive abilities and variations of grey matter as captured by a multi-modal independent component analysis, variables reflecting core aspects of cognitive and structural change throughout the lifespan. Furthermore, memory encoding activity aligned to fundamental aspects of brain organization, such as large-scale connectivity and evolutionary cortical expansion gradients. Altogether, we provide novel support for a perspective on memory aging in which maintenance and decay of episodic memory in older age needs to be understood from a comprehensive life-long perspective rather than as a late-life phenomenon only.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy