SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vodicka Pavel) ;pers:(Gunter Marc J.)"

Sökning: WFRF:(Vodicka Pavel) > Gunter Marc J.

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aglago, Elom K., et al. (författare)
  • A Genetic Locus within the FMN1/GREM1 Gene Region Interacts with Body Mass Index in Colorectal Cancer Risk
  • 2023
  • Ingår i: Cancer Research. - : American Association For Cancer Research (AACR). - 0008-5472 .- 1538-7445. ; 83:15, s. 2572-2583
  • Tidskriftsartikel (refereegranskat)abstract
    • Colorectal cancer risk can be impacted by genetic, environmental, and lifestyle factors, including diet and obesity. Gene-environment interactions (G × E) can provide biological insights into the effects of obesity on colorectal cancer risk. Here, we assessed potential genome-wide G × E interactions between body mass index (BMI) and common SNPs for colorectal cancer risk using data from 36,415 colorectal cancer cases and 48,451 controls from three international colorectal cancer consortia (CCFR, CORECT, and GECCO). The G × E tests included the conventional logistic regression using multiplicative terms (one degree of freedom, 1DF test), the two-step EDGE method, and the joint 3DF test, each of which is powerful for detecting G × E interactions under specific conditions. BMI was associated with higher colorectal cancer risk. The two-step approach revealed a statistically significant G×BMI interaction located within the Formin 1/Gremlin 1 (FMN1/GREM1) gene region (rs58349661). This SNP was also identified by the 3DF test, with a suggestive statistical significance in the 1DF test. Among participants with the CC genotype of rs58349661, overweight and obesity categories were associated with higher colorectal cancer risk, whereas null associations were observed across BMI categories in those with the TT genotype. Using data from three large international consortia, this study discovered a locus in the FMN1/GREM1 gene region that interacts with BMI on the association with colorectal cancer risk. Further studies should examine the potential mechanisms through which this locus modifies the etiologic link between obesity and colorectal cancer.SIGNIFICANCE: This gene-environment interaction analysis revealed a genetic locus in FMN1/GREM1 that interacts with body mass index in colorectal cancer risk, suggesting potential implications for precision prevention strategies.
  •  
2.
  • Archambault, Alexi N., et al. (författare)
  • Cumulative Burden of Colorectal Cancer Associated Genetic Variants Is More Strongly Associated With Early-Onset vs Late-Onset Cancer
  • 2020
  • Ingår i: Gastroenterology. - : Elsevier BV. - 0016-5085 .- 1528-0012. ; 158:5, s. 1274-1286.e12
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND & AIMS: Early-onset colorectal cancer (CRC, in persons younger than 50 years old) is increasing in incidence; yet, in the absence of a family history of CRC, this population lacks harmonized recommendations for prevention. We aimed to determine whether a polygenic risk score (PRS) developed from 95 CRC-associated common genetic risk variants was associated with risk for early-onset CRC.METHODS: We studied risk for CRC associated with a weighted PRS in 12,197 participants younger than 50 years old vs 95,865 participants 50 years or older. PRS was calculated based on single nucleotide polymorphisms associated with CRC in a large-scale genome-wide association study as of January 2019. Participants were pooled from 3 large consortia that provided clinical and genotyping data: the Colon Cancer Family Registry, the Colorectal Transdisciplinary Study, and the Genetics and Epidemiology of Colorectal Cancer Consortium and were all of genetically defined European descent. Findings were replicated in an independent cohort of 72,573 participants.RESULTS: Overall associations with CRC per standard deviation of PRS were significant for early-onset cancer, and were stronger compared with late-onset cancer (P for interaction = .01); when we compared the highest PRS quartile with the lowest, risk increased 3.7-fold for early-onset CRC (95% CI 3.28-4.24) vs 2.9-fold for late-onset CRC (95% CI 2.80-3.04). This association was strongest for participants without a first-degree family history of CRC (P for interaction = 5.61 x 10(-5)). When we compared the highest with the lowest quartiles in this group, risk increased 4.3-fold for early-onset CRC (95% CI 3.61-5.01) vs 2.9-fold for late-onset CRC (95% CI 2.70-3.00). Sensitivity analyses were consistent with these findings.CONCLUSIONS: In an analysis of associations with CRC per standard deviation of PRS, we found the cumulative burden of CRC-associated common genetic variants to associate with early-onset cancer, and to be more strongly associated with early-onset than late-onset cancer, particularly in the absence of CRC family history. Analyses of PRS, along with environmental and lifestyle risk factors, might identify younger individuals who would benefit from preventive measures.
  •  
3.
  • Bull, Caroline J., et al. (författare)
  • Adiposity, metabolites, and colorectal cancer risk : Mendelian randomization study
  • 2020
  • Ingår i: BMC Medicine. - : BMC. - 1741-7015. ; 18:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Higher adiposity increases the risk of colorectal cancer (CRC), but whether this relationship varies by anatomical sub-site or by sex is unclear. Further, the metabolic alterations mediating the effects of adiposity on CRC are not fully understood. Methods We examined sex- and site-specific associations of adiposity with CRC risk and whether adiposity-associated metabolites explain the associations of adiposity with CRC. Genetic variants from genome-wide association studies of body mass index (BMI) and waist-to-hip ratio (WHR, unadjusted for BMI; N = 806,810), and 123 metabolites from targeted nuclear magnetic resonance metabolomics (N = 24,925), were used as instruments. Sex-combined and sex-specific Mendelian randomization (MR) was conducted for BMI and WHR with CRC risk (58,221 cases and 67,694 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium, Colorectal Cancer Transdisciplinary Study, and Colon Cancer Family Registry). Sex-combined MR was conducted for BMI and WHR with metabolites, for metabolites with CRC, and for BMI and WHR with CRC adjusted for metabolite classes in multivariable models. Results In sex-specific MR analyses, higher BMI (per 4.2 kg/m(2)) was associated with 1.23 (95% confidence interval (CI) = 1.08, 1.38) times higher CRC odds among men (inverse-variance-weighted (IVW) model); among women, higher BMI (per 5.2 kg/m(2)) was associated with 1.09 (95% CI = 0.97, 1.22) times higher CRC odds. WHR (per 0.07 higher) was more strongly associated with CRC risk among women (IVW OR = 1.25, 95% CI = 1.08, 1.43) than men (IVW OR = 1.05, 95% CI = 0.81, 1.36). BMI or WHR was associated with 104/123 metabolites at false discovery rate-corrected P <= 0.05; several metabolites were associated with CRC, but not in directions that were consistent with the mediation of positive adiposity-CRC relations. In multivariable MR analyses, associations of BMI and WHR with CRC were not attenuated following adjustment for representative metabolite classes, e.g., the univariable IVW OR for BMI with CRC was 1.12 (95% CI = 1.00, 1.26), and this became 1.11 (95% CI = 0.99, 1.26) when adjusting for cholesterol in low-density lipoprotein particles. Conclusions Our results suggest that higher BMI more greatly raises CRC risk among men, whereas higher WHR more greatly raises CRC risk among women. Adiposity was associated with numerous metabolic alterations, but none of these explained associations between adiposity and CRC. More detailed metabolomic measures are likely needed to clarify the mechanistic pathways.
  •  
4.
  • Carreras-Torres, Robert, et al. (författare)
  • Genome-wide interaction study with smoking for colorectal cancer risk identifies novel genetic loci related to tumor suppression, inflammation, and immune response
  • 2023
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American association for cancer research. - 1055-9965 .- 1538-7755. ; 32:3, s. 315-328
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Tobacco smoking is an established risk factor for colorectal cancer. However, genetically defined population subgroups may have increased susceptibility to smoking-related effects on colorectal cancer.METHODS: A genome-wide interaction scan was performed including 33,756 colorectal cancer cases and 44,346 controls from three genetic consortia.RESULTS: Evidence of an interaction was observed between smoking status (ever vs. never smokers) and a locus on 3p12.1 (rs9880919, P = 4.58 × 10-8), with higher associated risk in subjects carrying the GG genotype [OR, 1.25; 95% confidence interval (CI), 1.20-1.30] compared with the other genotypes (OR <1.17 for GA and AA). Among ever smokers, we observed interactions between smoking intensity (increase in 10 cigarettes smoked per day) and two loci on 6p21.33 (rs4151657, P = 1.72 × 10-8) and 8q24.23 (rs7005722, P = 2.88 × 10-8). Subjects carrying the rs4151657 TT genotype showed higher risk (OR, 1.12; 95% CI, 1.09-1.16) compared with the other genotypes (OR <1.06 for TC and CC). Similarly, higher risk was observed among subjects carrying the rs7005722 AA genotype (OR, 1.17; 95% CI, 1.07-1.28) compared with the other genotypes (OR <1.13 for AC and CC). Functional annotation revealed that SNPs in 3p12.1 and 6p21.33 loci were located in regulatory regions, and were associated with expression levels of nearby genes. Genetic models predicting gene expression revealed that smoking parameters were associated with lower colorectal cancer risk with higher expression levels of CADM2 (3p12.1) and ATF6B (6p21.33).CONCLUSIONS: Our study identified novel genetic loci that may modulate the risk for colorectal cancer of smoking status and intensity, linked to tumor suppression and immune response.IMPACT: These findings can guide potential prevention treatments.
  •  
5.
  • Guo, Xingyi, et al. (författare)
  • Identifying Novel Susceptibility Genes for Colorectal Cancer Risk From a Transcriptome-Wide Association Study of 125,478 Subjects
  • 2020
  • Ingår i: Gastroenterology. - : Elsevier. - 0016-5085 .- 1528-0012. ; 160:4, s. 1164-1178
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Aims: Susceptibility genes and the underlying mechanisms for the majority of risk loci identified by genome-wide association studies (GWAS) for colorectal cancer (CRC) risk remain largely unknown. We conducted a transcriptome-wide association study (TWAS) to identify putative susceptibility genes.Methods: Gene-expression prediction models were built using transcriptome and genetic data from the 284 normal transverse colon tissues of European descendants from the Genotype-Tissue Expression (GTEx), and model performance was evaluated using data from The Cancer Genome Atlas (n = 355). We applied the gene-expression prediction models and GWAS data to evaluate associations of genetically predicted gene-expression with CRC risk in 58,131 CRC cases and 67,347 controls of European ancestry. Dual-luciferase reporter assays and knockdown experiments in CRC cells and tumor xenografts were conducted.Results: We identified 25 genes associated with CRC risk at a Bonferroni-corrected threshold of P < 9.1 × 10-6, including genes in 4 novel loci, PYGL (14q22.1), RPL28 (19q13.42), CAPN12 (19q13.2), MYH7B (20q11.22), and MAP1L3CA (20q11.22). In 9 known GWAS-identified loci, we uncovered 9 genes that have not been reported previously, whereas 4 genes remained statistically significant after adjusting for the lead risk variant of the locus. Through colocalization analysis in GWAS loci, we additionally identified 12 putative susceptibility genes that were supported by TWAS analysis at P < .01. We showed that risk allele of the lead risk variant rs1741640 affected the promoter activity of CABLES2. Knockdown experiments confirmed that CABLES2 plays a vital role in colorectal carcinogenesis.Conclusions: Our study reveals new putative susceptibility genes and provides new insight into the biological mechanisms underlying CRC development.
  •  
6.
  • Huyghe, Jeroen R., et al. (författare)
  • Discovery of common and rare genetic risk variants for colorectal cancer
  • 2019
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:1, s. 76-
  • Tidskriftsartikel (refereegranskat)abstract
    • To further dissect the genetic architecture of colorectal cancer (CRC), we performed whole-genome sequencing of 1,439 cases and 720 controls, imputed discovered sequence variants and Haplotype Reference Consortium panel variants into genome-wide association study data, and tested for association in 34,869 cases and 29,051 controls. Findings were followed up in an additional 23,262 cases and 38,296 controls. We discovered a strongly protective 0.3% frequency variant signal at CHD1. In a combined meta-analysis of 125,478 individuals, we identified 40 new independent signals at P < 5 x 10(-8), bringing the number of known independent signals for CRC to similar to 100. New signals implicate lower-frequency variants, Kruppel-like factors, Hedgehog signaling, Hippo-YAP signaling, long noncoding RNAs and somatic drivers, and support a role for immune function. Heritability analyses suggest that CRC risk is highly polygenic, and larger, more comprehensive studies enabling rare variant analysis will improve understanding of biology underlying this risk and influence personalized screening strategies and drug development.
  •  
7.
  • Huyghe, Jeroen R, et al. (författare)
  • Genetic architectures of proximal and distal colorectal cancer are partly distinct
  • 2021
  • Ingår i: Gut. - : BMJ Publishing Group Ltd. - 0017-5749 .- 1468-3288. ; 70:7, s. 1325-1334
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: An understanding of the etiologic heterogeneity of colorectal cancer (CRC) is critical for improving precision prevention, including individualized screening recommendations and the discovery of novel drug targets and repurposable drug candidates for chemoprevention. Known differences in molecular characteristics and environmental risk factors among tumors arising in different locations of the colorectum suggest partly distinct mechanisms of carcinogenesis. The extent to which the contribution of inherited genetic risk factors for CRC differs by anatomical subsite of the primary tumor has not been examined.Design: To identify new anatomical subsite-specific risk loci, we performed genome-wide association study (GWAS) meta-analyses including data of 48 214 CRC cases and 64 159 controls of European ancestry. We characterised effect heterogeneity at CRC risk loci using multinomial modelling.Results: We identified 13 loci that reached genome-wide significance (p<5×10-8) and that were not reported by previous GWASs for overall CRC risk. Multiple lines of evidence support candidate genes at several of these loci. We detected substantial heterogeneity between anatomical subsites. Just over half (61) of 109 known and new risk variants showed no evidence for heterogeneity. In contrast, 22 variants showed association with distal CRC (including rectal cancer), but no evidence for association or an attenuated association with proximal CRC. For two loci, there was strong evidence for effects confined to proximal colon cancer.Conclusion: Genetic architectures of proximal and distal CRC are partly distinct. Studies of risk factors and mechanisms of carcinogenesis, and precision prevention strategies should take into consideration the anatomical subsite of the tumour.
  •  
8.
  • Jarvik, Gail P., et al. (författare)
  • Hemochromatosis risk genotype is not associated with colorectal cancer or age at its diagnosis
  • 2020
  • Ingår i: Human Genetics and Genomics Advances. - : Cell press. - 2666-2477. ; 1:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Homozygotes for the higher penetrance hemochromatosis risk allele, HFE c.845G>A (p.Cys282Tyr, or C282Y), have been reported to be at a 2- to 3-fold increased risk for colorectal cancer (CRC). These results have been reported for small sample size studies with no information about age at diagnosis for CRC. An association with age at diagnosis might alter CRC screening recommendations. We analyzed two large European ancestry datasets to assess the association of HFE genotype with CRC risk and age at CRC diagnosis. The first dataset included 59,733 CRC or advanced adenoma cases and 72,351 controls from a CRC epidemiological study consortium. The second dataset included 13,564 self-reported CRC cases and 2,880,218 controls from the personal genetics company, 23andMe. No association of the common hereditary hemochromatosis (HH) risk genotype and CRC was found in either dataset. The odds ratios (ORs) for the association of CRC and HFE C282Y homozygosity were 1.08 (95% confidence interval [CI], 0.91–1.29; p = 0.4) and 1.01 (95% CI, 0.78–1.31, p = 0.9) in the two cohorts, respectively. Age at CRC diagnosis also did not differ by HFE C282Y/C282Y genotype in either dataset. These results indicate no increased CRC risk in individuals with HH genotypes and suggest that persons with HH risk genotypes can follow population screening recommendations for CRC.
  •  
9.
  • Murphy, Neil, et al. (författare)
  • Associations between Glycemic Traits and Colorectal Cancer : A Mendelian Randomization Analysis
  • 2022
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 0027-8874 .- 1460-2105. ; 114:5, s. 740-752
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Glycemic traits - such as hyperinsulinemia, hyperglycemia, and type 2 diabetes - have been associated with higher colorectal cancer risk in observational studies; however, causality of these associations is uncertain. We used Mendelian randomization (MR) to estimate the causal effects of fasting insulin, 2-hour glucose, fasting glucose, glycated hemoglobin (HbA1c), and type 2 diabetes with colorectal cancer. Methods: Genome-wide association study summary data were used to identify genetic variants associated with circulating levels of fasting insulin (n = 34), 2-hour glucose (n = 13), fasting glucose (n = 70), HbA1c (n = 221), and type 2 diabetes (n = 268). Using 2-sample MR, we examined these variants in relation to colorectal cancer risk (48 214 case patient and 64 159 control patients). Results: In inverse-variance models, higher fasting insulin levels increased colorectal cancer risk (odds ratio [OR] per 1-SD = 1.65, 95% confidence interval [CI] = 1.15 to 2.36). We found no evidence of any effect of 2-hour glucose (OR per 1-SD = 1.02, 95% CI = 0.86 to 1.21) or fasting glucose (OR per 1-SD = 1.04, 95% CI = 0.88 to 1.23) concentrations on colorectal cancer risk. Genetic liability to type 2 diabetes (OR per 1-unit increase in log odds = 1.04, 95% CI = 1.01 to 1.07) and higher HbA1c levels (OR per 1-SD = 1.09, 95% CI = 1.00 to 1.19) increased colorectal cancer risk, although these findings may have been biased by pleiotropy. Higher HbA1c concentrations increased rectal cancer risk in men (OR per 1-SD = 1.21, 95% CI = 1.05 to 1.40), but not in women. Conclusions: Our results support a causal effect of higher fasting insulin, but not glucose traits or type 2 diabetes, on increased colorectal cancer risk. This suggests that pharmacological or lifestyle interventions that lower circulating insulin levels may be beneficial in preventing colorectal tumorigenesis.
  •  
10.
  • Murphy, Neil, et al. (författare)
  • Circulating Levels of Insulin-like Growth Factor 1 and Insulin-like Growth Factor Binding Protein 3 Associate With Risk of Colorectal Cancer Based on Serologic and Mendelian Randomization Analyses
  • 2020
  • Ingår i: Gastroenterology. - : Elsevier BV. - 0016-5085 .- 1528-0012. ; 158:5, s. 1300-1312.e20
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & Aims: Human studies examining associations between circulating levels of insulin-like growth factor 1 (IGF1) and insulin-like growth factor binding protein 3 (IGFBP3) and colorectal cancer risk have reported inconsistent results. We conducted complementary serologic and Mendelian randomization (MR) analyses to determine whether alterations in circulating levels of IGF1 or IGFBP3 are associated with colorectal cancer development.Methods: Serum levels of IGF1 were measured in blood samples collected from 397,380 participants from the UK Biobank, from 2006 through 2010. Incident cancer cases and cancer cases recorded first in death certificates were identified through linkage to national cancer and death registries. Complete follow-up was available through March 31, 2016. For the MR analyses, we identified genetic variants associated with circulating levels of IGF1 and IGFBP3. The association of these genetic variants with colorectal cancer was examined with 2-sample MR methods using genome-wide association study consortia data (52,865 cases with colorectal cancer and 46,287 individuals without [controls])Results: After a median follow-up period of 7.1 years, 2665 cases of colorectal cancer were recorded. In a multivariable-adjusted model, circulating level of IGF1 associated with colorectal cancer risk (hazard ratio per 1 standard deviation increment of IGF1, 1.11; 95% confidence interval [CI] 1.05–1.17). Similar associations were found by sex, follow-up time, and tumor subsite. In the MR analyses, a 1 standard deviation increment in IGF1 level, predicted based on genetic factors, was associated with a higher risk of colorectal cancer risk (odds ratio 1.08; 95% CI 1.03–1.12; P = 3.3 × 10–4). Level of IGFBP3, predicted based on genetic factors, was associated with colorectal cancer risk (odds ratio per 1 standard deviation increment, 1.12; 95% CI 1.06–1.18; P = 4.2 × 10–5). Colorectal cancer risk was associated with only 1 variant in the IGFBP3 gene region (rs11977526), which also associated with anthropometric traits and circulating level of IGF2.Conclusions: In an analysis of blood samples from almost 400,000 participants in the UK Biobank, we found an association between circulating level of IGF1 and colorectal cancer. Using genetic data from 52,865 cases with colorectal cancer and 46,287 controls, a higher level of IGF1, determined by genetic factors, was associated with colorectal cancer. Further studies are needed to determine how this signaling pathway might contribute to colorectal carcinogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy