Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vogt Aurelie) "

Sökning: WFRF:(Vogt Aurelie)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
  • Kördel, Mikael, et al. (författare)
  • Laboratory water-window x-ray microscopy
  • 2020
  • Ingår i: Operator Theory. - : The Optical Society. - 1004-4469 .- 2334-2536. ; 7:6, s. 658-674
  • Forskningsöversikt (refereegranskat)abstract
    • Soft x-ray microscopy in the water window (similar to 285-535 eV) is an emerging and unique tool for 2D and 3D imaging of unstained intact cellular samples in their near-native state with few-10-nm detail. However, present microscopes rely on the high x-ray brightness of synchrotron-radiation sources. Having access to water-window microscopy in the home laboratory would increase the impact and extend the applicability of the method. In the present paper, we review three decades of efforts to build laboratory water-window microscopes and conclude that the method is now reaching the maturity to allow biological studies. The instruments as well as their key components are quantitatively and qualitatively compared. We find that the brightness and the reliability of the laboratory source are the most critical parameters, but that the optics as well as the sample preparation also must be optimized to enable high-resolution imaging with adequate exposure times. We then describe the two sister microscopes in Stockholm and Berlin, which allow reliable high-resolution biological imaging with short exposure times of a few tens of seconds in 2D and a few tens of minutes in 3D. They both rely on a liquid-jet laser-plasma source combined with high-reflectivity normal-incidence multilayer condenser optics, high-resolution zone-plate imaging optics, CCD detection, and cryogenic sample handling. Finally, we present several examples of biological imaging demonstrating the unique properties of these instruments. 
  • Yang, Xiaohong R., et al. (författare)
  • Multiple rare variants in high-risk pancreatic cancer-related genes may increase risk for pancreatic cancer in a subset of patients with and without germline CDKN2A mutations
  • 2016
  • Ingår i: Human Genetics. - : Springer. - 0340-6717. ; 135:11, s. 1241-1249
  • Tidskriftsartikel (refereegranskat)abstract
    • The risk of pancreatic cancer (PC) is increased in melanoma-prone families but the causal relationship between germline CDKN2A mutations and PC risk is uncertain, suggesting the existence of non-CDKN2A factors. One genetic possibility involves patients having mutations in multiple high-risk PC-related genes; however, no systematic examination has yet been conducted. We used next-generation sequencing data to examine 24 putative PC-related genes in 43 PC patients with and 23 PC patients without germline CDKN2A mutations and 1001 controls. For each gene and the four pathways in which they occurred, we tested whether PC patients (overall or CDKN2A+ and CDKN2A− cases separately) had an increased number of rare nonsynonymous variants. Overall, we identified 35 missense variants in PC patients, 14 in CDKN2A+ and 21 in CDKN2A− PC cases. We found nominally significant associations for mismatch repair genes (MLH1, MSH2, MSH6, PMS2) in all PC patients and for ATM, CPA1, and PMS2 in CDKN2A− PC patients. Further, nine CDKN2A+ and four CDKN2A− PC patients had rare potentially deleterious variants in multiple PC-related genes. Loss-of-function variants were only observed in CDKN2A− PC patients, with ATM having the most pathogenic variants. Also, ATM variants (n = 5) were only observed in CDKN2A− PC patients with a family history that included digestive system tumors. Our results suggest that a subset of PC patients may have increased risk because of germline mutations in multiple PC-related genes.
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy