SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Vogt Aurelie) ;mspu:(article)"

Sökning: WFRF:(Vogt Aurelie) > Tidskriftsartikel

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sarris, Theodore E., et al. (författare)
  • Daedalus MASE (mission assessment through simulation exercise): A toolset for analysis of in situ missions and for processing global circulation model outputs in the lower thermosphere-ionosphere
  • 2023
  • Ingår i: Frontiers in Astronomy and Space Sciences. - : Frontiers Media SA. - 2296-987X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Daedalus MASE (Mission Assessment through Simulation Exercise) is an open-source package of scientific analysis tools aimed at research in the Lower Thermosphere-Ionosphere (LTI). It was created with the purpose to assess the performance and demonstrate closure of the mission objectives of Daedalus, a mission concept targeting to perform in-situ measurements in the LTI. However, through its successful usage as a mission-simulator toolset, Daedalus MASE has evolved to encompass numerous capabilities related to LTI science and modeling. Inputs are geophysical observables in the LTI, which can be obtained either through in-situ measurements from spacecraft and rockets, or through Global Circulation Models (GCM). These include ion, neutral and electron densities, ion and neutral composition, ion, electron and neutral temperatures, ion drifts, neutral winds, electric field, and magnetic field. In the examples presented, these geophysical observables are obtained through NCAR’s Thermosphere-Ionosphere-Electrodynamics General Circulation Model. Capabilities of Daedalus MASE include: 1) Calculations of products that are derived from the above geophysical observables, such as Joule heating, energy transfer rates between species, electrical currents, electrical conductivity, ion-neutral collision frequencies between all combinations of species, as well as height-integrations of derived products. 2) Calculation and cross-comparison of collision frequencies and estimates of the effect of using different models of collision frequencies into derived products. 3) Calculation of the uncertainties of derived products based on the uncertainties of the geophysical observables, due to instrument errors or to uncertainties in measurement techniques. 4) Routines for the along-orbit interpolation within gridded datasets of GCMs. 5) Routines for the calculation of the global coverage of an in situ mission in regions of interest and for various conditions of solar and geomagnetic activity. 6) Calculations of the statistical significance of obtaining the primary and derived products throughout an in situ mission’s lifetime. 7) Routines for the visualization of 3D datasets of GCMs and of measurements along orbit. Daedalus MASE code is accompanied by a set of Jupyter Notebooks, incorporating all required theory, references, codes and plotting in a user-friendly environment. Daedalus MASE is developed and maintained at the Department for Electrical and Computer Engineering of the Democritus University of Thrace, with key contributions from several partner institutions.
  •  
2.
  • Yang, Xiaohong R., et al. (författare)
  • Multiple rare variants in high-risk pancreatic cancer-related genes may increase risk for pancreatic cancer in a subset of patients with and without germline CDKN2A mutations
  • 2016
  • Ingår i: Human Genetics. - : Springer Science and Business Media LLC. - 0340-6717 .- 1432-1203. ; 135:11, s. 1241-1249
  • Tidskriftsartikel (refereegranskat)abstract
    • The risk of pancreatic cancer (PC) is increased in melanoma-prone families but the causal relationship between germline CDKN2A mutations and PC risk is uncertain, suggesting the existence of non-CDKN2A factors. One genetic possibility involves patients having mutations in multiple high-risk PC-related genes; however, no systematic examination has yet been conducted. We used next-generation sequencing data to examine 24 putative PC-related genes in 43 PC patients with and 23 PC patients without germline CDKN2A mutations and 1001 controls. For each gene and the four pathways in which they occurred, we tested whether PC patients (overall or CDKN2A+ and CDKN2A− cases separately) had an increased number of rare nonsynonymous variants. Overall, we identified 35 missense variants in PC patients, 14 in CDKN2A+ and 21 in CDKN2A− PC cases. We found nominally significant associations for mismatch repair genes (MLH1, MSH2, MSH6, PMS2) in all PC patients and for ATM, CPA1, and PMS2 in CDKN2A− PC patients. Further, nine CDKN2A+ and four CDKN2A− PC patients had rare potentially deleterious variants in multiple PC-related genes. Loss-of-function variants were only observed in CDKN2A− PC patients, with ATM having the most pathogenic variants. Also, ATM variants (n = 5) were only observed in CDKN2A− PC patients with a family history that included digestive system tumors. Our results suggest that a subset of PC patients may have increased risk because of germline mutations in multiple PC-related genes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy