SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wängberg Sten Åke 1955) "

Sökning: WFRF:(Wängberg Sten Åke 1955)

  • Resultat 1-10 av 46
  • [1]2345Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jenny, Jean Philippe, et al. (författare)
  • Scientists’ Warning to Humanity: Rapid degradation of the world's large lakes
  • 2020
  • Ingår i: Journal of Great Lakes Research. - : Elsevier BV. - 0380-1330. ; 46:4, s. 686-702
  • Forskningsöversikt (refereegranskat)abstract
    • © 2020 The Authors Large lakes of the world are habitats for diverse species, including endemic taxa, and are valuable resources that provide humanity with many ecosystem services. They are also sentinels of global and local change, and recent studies in limnology and paleolimnology have demonstrated disturbing evidence of their collective degradation in terms of depletion of resources (water and food), rapid warming and loss of ice, destruction of habitats and ecosystems, loss of species, and accelerating pollution. Large lakes are particularly exposed to anthropogenic and climatic stressors. The Second Warning to Humanity provides a framework to assess the dangers now threatening the world's large lake ecosystems and to evaluate pathways of sustainable development that are more respectful of their ongoing provision of services. Here we review current and emerging threats to the large lakes of the world, including iconic examples of lake management failures and successes, from which we identify priorities and approaches for future conservation efforts. The review underscores the extent of lake resource degradation, which is a result of cumulative perturbation through time by long-term human impacts combined with other emerging stressors. Decades of degradation of large lakes have resulted in major challenges for restoration and management and a legacy of ecological and economic costs for future generations. Large lakes will require more intense conservation efforts in a warmer, increasingly populated world to achieve sustainable, high-quality waters. This Warning to Humanity is also an opportunity to highlight the value of a long-term lake observatory network to monitor and report on environmental changes in large lake ecosystems.
  •  
2.
  • Andrady, Anthony, et al. (författare)
  • Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2016
  • 2017
  • Ingår i: Photochemical and Photobiological Sciences. - : Royal Society of Chemistry. - 1474-905X .- 1474-9092. ; 16:2, s. 107-145
  • Forskningsöversikt (refereegranskat)abstract
    • © 2017 The Royal Society of Chemistry and Owner Societies. The Parties to the Montreal Protocol are informed by three Panels of experts. One of these is the Environmental Effects Assessment Panel (EEAP), which deals with two focal issues. The first focus is the effects of UV radiation on human health, animals, plants, biogeochemistry, air quality, and materials. The second focus is on interactions between UV radiation and global climate change and how these may affect humans and the environment. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than previously believed. As a result of this, human health and environmental issues will be longer-lasting and more regionally variable. Like the other Panels, the EEAP produces a detailed report every four years; the most recent was published as a series of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). In the years in between, the EEAP produces less detailed and shorter Progress Reports of the relevant scientific findings. The most recent of these was for 2015 (Photochem. Photobiol. Sci., 2016, 15, 141-147). The present Progress Report for 2016 assesses some of the highlights and new insights with regard to the interactive nature of the direct and indirect effects of UV radiation, atmospheric processes, and climate change. The more detailed Quadrennial Assessment will be made available in 2018.
  •  
3.
  • Barnes, P. W., et al. (författare)
  • Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2021
  • 2022
  • Ingår i: Photochemical & Photobiological Sciences. - : Springer. - 1474-905X .- 1474-9092.
  • Tidskriftsartikel (refereegranskat)abstract
    • The Environmental Effects Assessment Panel of the Montreal Protocol under the United Nations Environment Programme evaluates effects on the environment and human health that arise from changes in the stratospheric ozone layer and concomitant variations in ultraviolet (UV) radiation at the Earth’s surface. The current update is based on scientific advances that have accumulated since our last assessment (Photochem and Photobiol Sci 20(1):1–67, 2021). We also discuss how climate change affects stratospheric ozone depletion and ultraviolet radiation, and how stratospheric ozone depletion affects climate change. The resulting interlinking effects of stratospheric ozone depletion, UV radiation, and climate change are assessed in terms of air quality, carbon sinks, ecosystems, human health, and natural and synthetic materials. We further highlight potential impacts on the biosphere from extreme climate events that are occurring with increasing frequency as a consequence of climate change. These and other interactive effects are examined with respect to the benefits that the Montreal Protocol and its Amendments are providing to life on Earth by controlling the production of various substances that contribute to both stratospheric ozone depletion and climate change. © 2022, The Author(s).
  •  
4.
  • Barnes, Paul W., et al. (författare)
  • Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future
  • 2019
  • Ingår i: Nature Sustainability. - : Nature Publishing Group. - 2398-9629. ; 2:7, s. 569-579
  • Forskningsöversikt (refereegranskat)abstract
    • © 2019, Springer Nature Limited. Changes in stratospheric ozone and climate over the past 40-plus years have altered the solar ultraviolet (UV) radiation conditions at the Earth’s surface. Ozone depletion has also contributed to climate change across the Southern Hemisphere. These changes are interacting in complex ways to affect human health, food and water security, and ecosystem services. Many adverse effects of high UV exposure have been avoided thanks to the Montreal Protocol with its Amendments and Adjustments, which have effectively controlled the production and use of ozone-depleting substances. This international treaty has also played an important role in mitigating climate change. Climate change is modifying UV exposure and affecting how people and ecosystems respond to UV; these effects will become more pronounced in the future. The interactions between stratospheric ozone, climate and UV radiation will therefore shift over time; however, the Montreal Protocol will continue to have far-reaching benefits for human well-being and environmental sustainability.
  •  
5.
  • Neale, R. E., et al. (författare)
  • Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020
  • 2021
  • Ingår i: Photochemical & Photobiological Sciences. - : Springer Nature. - 1474-905X .- 1474-9092. ; 20, s. 1-67
  • Tidskriftsartikel (refereegranskat)abstract
    • This assessment by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) provides the latest scientific update since our most recent comprehensive assessment (Photochemical and Photobiological Sciences, 2019, 18, 595-828). The interactive effects between the stratospheric ozone layer, solar ultraviolet (UV) radiation, and climate change are presented within the framework of the Montreal Protocol and the United Nations Sustainable Development Goals. We address how these global environmental changes affect the atmosphere and air quality; human health; terrestrial and aquatic ecosystems; biogeochemical cycles; and materials used in outdoor construction, solar energy technologies, and fabrics. In many cases, there is a growing influence from changes in seasonality and extreme events due to climate change. Additionally, we assess the transmission and environmental effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the COVID-19 pandemic, in the context of linkages with solar UV radiation and the Montreal Protocol.
  •  
6.
  • Paul, C., et al. (författare)
  • Diatom Derived Polyunsaturated Aldehydes Do Not Structure the Planktonic Microbial Community in a Mesocosm Study
  • 2012
  • Ingår i: Marine Drugs. - Basel : MDPI. - 1660-3397. ; 10:4, s. 775-792
  • Tidskriftsartikel (refereegranskat)abstract
    • Several marine and freshwater diatoms produce polyunsaturated aldehydes (PUA) in wound-activated processes. These metabolites are also released by intact diatom cells during algal blooms. Due to their activity in laboratory experiments, PUA are considered as potential mediators of diatom-bacteria interactions. Here, we tested the hypothesis that PUA mediate such processes in a close-to-field mesocosm experiment. Natural plankton communities enriched with Skeletonema marinoi strains that differ in their PUA production, a plankton control, and a plankton control supplemented with PUA at natural and elevated concentrations were observed. We monitored bacterial and viral abundance as well as bacterial community composition and did not observe any influence of PUA on these parameters even at elevated concentrations. We rather detected an alternation of the bacterial diversity over time and differences between the two S. marinoi strains, indicating unique dynamic bacterial communities in these algal blooms. These results suggest that factors other than PUA are of significance for interactions between diatoms and bacteria.
  •  
7.
  • Abrahamsson, Katarina, 1957, et al. (författare)
  • Air-sea exchange of halocarbons: the influence of diurnal and regional variations and distribution of pigments
  • 2004
  • Ingår i: Deep-Sea Research Part Ii-Topical Studies in Oceanography. - 0967-0645. ; 51:22-24, s. 2789-2805
  • Tidskriftsartikel (refereegranskat)abstract
    • Diurnal cycles of halocarbons, except methyl bromide and methyl chloride, were observed at six 24-h stations occupied in three different regions, the Summer Ice Edge, the Winter Ice Edge, and the Antarctic Polar Front, in the Atlantic sector of the Southern Ocean during a Swedish-South African expedition in 1997/1998. The diurnal cycles contained three phases; a productive phase, a phase of losses and a phase with steady state. The duration of the different phases varied for the different stations as well as for individual compounds. The measured production and losses of organo-halogens in the Antarctic Ocean based on values from each station, were in the order of a few to hundreds of Tg yr(-1). Bromochloromethane, tribromomethane, trichloroethene and diiodomethane were the four compounds found in highest concentrations throughout the investigation, and they were found to be the major contributors of organohalogens. Only the presence of the photosynthetic pigment 19'-hexanoyloxyfucoxanthin, biomarker pigment of haptophytes, could explain some of the variations in the distribution and production of halocarbons, and then only for iodinated compounds. The flux of organo-halogens from the oceans to the atmosphere was estimated in two ways, either based on calculations according to models or based on the measured concentrations. Large discrepancies were found, which could not be explained by chemical or biological degradation or adsorption to particles. This investigation, therefore, shows the need for assessing the rates of degradation and the air-sea exchange more accurately. (C) 2004 Elsevier Ltd. All rights reserved.
  •  
8.
  • Andrady, A, et al. (författare)
  • Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015
  • 2016
  • Ingår i: Photochemical and Photobiological Sciences. - 1474-905X .- 1474-9092. ; 15:2, s. 141-174
  • Tidskriftsartikel (refereegranskat)abstract
    • The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, biogeochemistry, air quality, and materials. The Panels provide a detailed assessment report every four years. The most recent 2014 Quadrennial Assessment by the EEAP was published as a special issue of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). The next Quadrennial Assessment will be published in 2018/2019. In the interim, the EEAP generally produces an annual update or progress report of the relevant scientific findings. The present progress report for 2015 assesses some of the highlights and new insights with regard to the interactive nature of the effects of UV radiation, atmospheric processes, and climate change.
  •  
9.
  • Andreasson, Kristin I. M., 1963, et al. (författare)
  • Biological weighting functions as a tool for evaluating two ways to measure UVB radiation inhibition on photosynthesis
  • 2006
  • Ingår i: Journal of Photochemistry and Photobiology B-Biology. - 1011-1344. ; 84:2, s. 111-118
  • Tidskriftsartikel (refereegranskat)abstract
    • To estimate the inhibitory effect of the changing UVB radiation (UVBR, 280-315 nm) on earth's ecosystems, an understanding of its wavelength dependency is needed. The tool used for these estimations is the biological weighting function (BWF), whereby the inhibition of different wavelengths is calculated. B\WFs were determined for three algae species from different classes, Phaeodactylum tricornutum (Bacillariophyceae), Dunaliella tertiolecta (Chlorophyceae) and Rhodomonas sp. (Cryptophyceae), using polychromatic irradiation, where the UVBR spectra were varied with cut-off filters. For each alga, BWFs were determined for two photosynthetic parameters; the quantum yield measured as fluorescence from Photo System II in a pulse-amplitude-modulation (PAM) fluorometer, and the fixation of C-14-labelled carbon dioxide. The BWFs were calculated with the Rundel method, using the radiation data between 270 and 360 nm with 1 nm resolution. The results show that the UVBR damages were generally higher when using the carbon fixation measurements than when measuring with the PAM technique. When using PAM, P. tricornutum in particular had a sensitivity intermediate between the sensitive Rhodomonas sp. and the more tolerant D. tertiolecta, but was as sensitive as, or even more sensitive, than Rhodomonas sp. when using carbon fixation. D. tertiolecta was shown to be less sensitive when using both techniques and the inhibition of its photosynthesis was almost as high when using PAM as when using carbon fixation. We concluded that, although the PAM technique has advantages such as being cleaner and easier to use, it is unable to Substitute the carbon fixation measurements. Not only are the algae less sensitive when measured with PAM than they are when measured as carbon fixation, the relationship between the effects on the algae measured with the two techniques also differs. As fixation of carbon dioxide integrates a larger part of the photosynthetic machinery, it should be favoured as a measure of photosynthesis. (c) 2006 Elsevier B.V. All rights reserved.
  •  
10.
  • Andreasson, Kristin I. M., 1963, et al. (författare)
  • Reduction in growth rate in Phaeodactylum tricornutum (Bacillarlophyceae) and Dunaliella tertiolecta (Chlorophyceae) induced by UV-B radiation
  • 2007
  • Ingår i: Journal of Photochemistry and Photobiology B-Biology. - 1011-1344. ; 86:3, s. 227-233
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of UV-B radiation (UVBR, 280-315 nm) on growth rate during 72 h of incubation, was measured for two marine microalgae - Dunaliella tertiolecta (Chlorophyceae) and Phaeodactyhan tricornutum (Bacillariophyceae). The resulting inhibition of growth rate was analysed by calculating biological weighting functions (BWFs). The growth rate of D. tertiolecta was slightly more inhibited by UVBR (over the whole range of the spectrum) than was the growth rate of P. tricornutum, but the wavelength dependencies were the same. Our results were compared with results from photosynthesis experiments of Andreasson and Wangberg [1], where two methods, pulse amplitude modulation (PAM) fluorescence and carbon fixation, were measured for these same algae. The BWF for the growth rate, here, showed more wavelength dependency than the BWF for the previous two photosynthesis measurements - except for the carbon fixation BWF in P. tricornutum, which was closer to the BWF for growth rate. The wavelength dependency of the growth rate inhibition showed less variation between the species than the inhibition of the photosynthesis. (c) 2006 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 46
  • [1]2345Nästa
Typ av publikation
tidskriftsartikel (36)
konferensbidrag (5)
forskningsöversikt (3)
rapport (2)
Typ av innehåll
refereegranskat (41)
övrigt vetenskapligt (4)
populärvet., debatt m.m. (1)
Författare/redaktör
Wängberg, Sten-Åke, ... (46)
Wulff, Angela, 1963 (12)
Nilsson, C (6)
Hylander, Samuel (6)
Andreasson, Kristin ... (6)
Sundbäck, Kristina, ... (5)
visa fler...
Häder, Donat-P. (5)
Longstreth, J (5)
Madronich, S (5)
Sulzberger, B (5)
Williamson, C. E. (5)
Rose, K. C. (5)
Häder, D. -P (5)
Hou, W. C. (5)
Bergkvist, Johanna, ... (4)
Young, A. R. (4)
Hylander, S (4)
Ballaré, Carlos L. (4)
McKenzie, R L (4)
Bais, A. F. (4)
Lucas, R. M. (4)
Bornman, J. F. (4)
Wilson, S. R. (4)
Andrady, A. L. (4)
Aucamp, P. J. (4)
Neale, R. E. (4)
Yazar, S. (4)
Barnes, P. W. (4)
Robson, T. M. (4)
Robinson, S. A. (4)
Neale, P. J. (4)
Zepp, R. G. (4)
Solomon, K. R. (4)
Pandey, K. K. (4)
Wang, Q. W. (4)
de Gruijl, Frank R. (3)
Worrest, Robert C. (3)
Robinson, Sharon A. (3)
Williamson, Craig E. (3)
Rose, Kevin C. (3)
Austin, A.T. (3)
Bernhard, G. H. (3)
Hader, D. P. (3)
Paul, N. D. (3)
Reinthaler, Thomas (3)
Jansen, M. A. K. (3)
Banaszak, A. T. (3)
Schikowski, T. (3)
White, C. C. (3)
Liley, J. B. (3)
visa färre...
Lärosäte
Göteborgs universitet (46)
Linnéuniversitetet (7)
Uppsala universitet (1)
Lunds universitet (1)
Chalmers tekniska högskola (1)
Språk
Engelska (42)
Svenska (4)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (28)
Teknik (2)
Medicin och hälsovetenskap (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy