SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wadelius Mia) ;pers:(Hamberg Anna Karin)"

Sökning: WFRF:(Wadelius Mia) > Hamberg Anna Karin

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Attelind, Sofia, et al. (författare)
  • Genetic determinants of apixaban plasma levels and their relationship to bleeding and thromboembolic events
  • 2022
  • Ingår i: Frontiers in Genetics. - : Frontiers Media S.A.. - 1664-8021. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Apixaban is a direct oral anticoagulant, a factor Xa inhibitor, used for the prevention of ischemic stroke in patients with atrial fibrillation. Despite using recommended dosing a few patients might still experience bleeding or lack of efficacy that might be related to inappropriate drug exposure. We conducted a genome-wide association study using data from 1,325 participants in the pivotal phase three trial of apixaban with the aim to identify genetic factors affecting the pharmacokinetics of apixaban. A candidate gene analysis was also performed for pre-specified variants in ABCB1, ABCG2, CYP3A4, CYP3A5, and SULT1A1, with a subsequent analysis of all available polymorphisms within the candidate genes. Significant findings were further evaluated to assess a potential association with clinical outcome such as bleeding or thromboembolic events. No variant was consistently associated with an altered apixaban exposure on a genome-wide level. The candidate gene analyses showed a statistically significant association with a well-known variant in the drug transporter gene ABCG2 (c.421G > T, rs2231142). Patients carrying this variant had a higher exposure to apixaban [area under the curve (AUC), beta = 151 (95% CI 59-243), p = 0.001]. On average, heterozygotes displayed a 5% increase of AUC and homozygotes a 17% increase of AUC, compared with homozygotes for the wild-type allele. Bleeding or thromboembolic events were not significantly associated with ABCG2 rs2231142. This large genome-wide study demonstrates that genetic variation in the drug transporter gene ABCG2 is associated with the pharmacokinetics of apixaban. However, the influence of this finding on drug exposure was small, and further studies are needed to better understand whether it is of relevance for ischemic and bleeding events.
  •  
2.
  • Avery, P. J., et al. (författare)
  • A Proposal for an Individualized Pharmacogenetics-Based Warfarin Initiation Dose Regimen for Patients Commencing Anticoagulation Therapy
  • 2011
  • Ingår i: Clinical Pharmacology and Therapeutics. - : Springer Science and Business Media LLC. - 0009-9236 .- 1532-6535. ; 90:5, s. 701-706
  • Tidskriftsartikel (refereegranskat)abstract
    • A significant proportion of the interindividual variability in warfarin dose requirements can be explained on the basis of CYP2C9 and VKORC1 genotypes. We report the development of a novel pharmacogenetics-based 3-day warfarin initiation dose (ID) algorithm based on the International Warfarin Pharmacogenetics Consortium (IWPC) maintenance dose algorithm and the CYP2C9 genotype-based variance in warfarin half-life. The predictive value of the pharmacogenetics-based ID was assessed in a large cohort of 671 newly diagnosed patients with thromboembolic disorders who were about to commence anticoagulation therapy in accordance with standard induction regimens. In patients with mean international normalized ratio (INR)(days 4-7)>4.0 (n = 63) after warfarin initiation, the pharmacogenetics-based ID algorithm predicted a markedly lower dose requirement (median reduction = 4.2 mg), whereas in those with mean INR(days 4-7) < 2.0 (n = 145), the predicted dose requirement was very similar to that in the standard regimen. The use of a pharmacogenetics-based ID may avoid overshooting of INR in warfarin-sensitive patients without unduly affecting the time taken to reach target range in the majority of patients.
  •  
3.
  •  
4.
  • Hamberg, Anna-Karin, et al. (författare)
  • A Bayesian decision support tool for efficient dose individualization of warfarin in adults and children
  • 2015
  • Ingår i: BMC Medical Informatics and Decision Making. - : Springer Science and Business Media LLC. - 1472-6947. ; 15:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Warfarin is the most widely prescribed anticoagulant for prevention and treatment of thromboembolic events. Although highly effective, the use of warfarin is limited by a narrow therapeutic range combined with a more than ten-fold difference in the dose required for adequate anticoagulation in adults. For each patient, an optimal dose that leads to a favourable balance between the wanted antithrombotic effect and the risk of bleeding, measured as the prothrombin time International Normalised Ratio (INR), must be found. A model capable of describing the time-course of the INR response to warfarin therapy can be used to aid dose selection, both before starting therapy (a priori dose prediction) and after therapy has been initiated (a posteriori dose revision). In this paper we describe the transfer of a population PKPD-model for warfarin developed in NONMEM to a platform independent decision support tool written in Java. The tool proved capable of solving a system of differential equations representing the pharmacokinetics and pharmacodynamics of warfarin, with a performance comparable to NONMEM. To estimate an a priori dose the user provides information on body weight, age, CYP2C9 and VKORC1 genotype, baseline and target INR. With addition of information about previous doses and INR observations, the tool will use a Bayesian forecasting method to suggest an a posteriori dose, i.e. the dose with the highest probability to result in the desired INR. Results are displayed as the predicted dose per day and per week, and graphically as the predicted INR curve. The tool can also be used to predict INR following any given dose regimen, e.g. a loading-dose regimen. We believe it will provide a clinically useful tool for initiating and maintaining warfarin therapy in the clinic. It will ensure consistent dose adjustment practices between prescribers, and provide more efficient individualization of warfarin dosing in both children and adults.
  •  
5.
  • Hamberg, Anna-Karin, et al. (författare)
  • A Pharmacometric Model Describing the Relationship Between Warfarin Dose and INR Response With Respect to Variations in CYP2C9, VKORC1, and Age
  • 2010
  • Ingår i: Clinical Pharmacology and Therapeutics. - : Springer Science and Business Media LLC. - 0009-9236 .- 1532-6535. ; 87:6, s. 727-734
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of the study was to update a previous NONMEM model to describe the relationship between warfarin dose and international normalized ratio (INR) response, to decrease the dependence of the model on pharmacokinetic (PK) data, and to improve the characterization of rare genotype combinations. The effects of age and CYP2C9 genotype on S-warfarin clearance were estimated from high-quality PK data. Thereafter, a temporal dose-response (K-PD) model was developed from information on dose, INR, age, and CYP2C9 and VKORC1 genotype, with drug clearance as a covariate. Two transit compartment chains accounted for the delay between exposure and response. CYP2C9 genotype was identified as the single most important predictor of required dose, causing a difference of up to 4.2-fold in the maintenance dose. VKORC1 accounted for a difference of up to 2.1-fold in dose, and age reduced the dose requirement by ~6% per decade. This reformulated K-PD model decreases dependence on PK data and enables robust assessment of INR response and dose predictions, even in individuals with rare genotype combinations.
  •  
6.
  • Hamberg, Anna Karin, et al. (författare)
  • A PK-PD model for predicting the impact of age, CYP2C9, and VKORC1 genotype on individualization of warfarin therapy
  • 2007
  • Ingår i: Clinical Pharmacology and Therapeutics. - : Springer Science and Business Media LLC. - 0009-9236 .- 1532-6535. ; 81:4, s. 529-538
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to characterize the relationship between warfarin concentrations and international normalized ratio (INR) response and to identify predictors important for dose individualization. S- and R-warfarin concentrations, INR, and CYP2C9 and VKORC1 genotypes from 150 patients were used to develop a population pharmacokinetic/pharmacodynamic model in NONMEM. The anticoagulant response was best described by an inhibitory E(MAX) model, with S-warfarin concentration as the only exposure predictor for response. Delay between exposure and response was accounted for by a transit compartment model with two parallel transit compartment chains. CYP2C9 genotype and age were identified as predictors for S-warfarin clearance, and VKORC1 genotype as a predictor for warfarin sensitivity. Predicted INR curves indicate important steady-state differences between patients with different sets of covariates; differences that cannot be foreseen from early INR assessments alone. It is important to account for CYP2C9 and VKORC1 genotypes and age to improve a priori and a posteriori individualization of warfarin therapy.
  •  
7.
  • Hamberg, Anna-Karin, et al. (författare)
  • Characterising variability in warfarin dose requirements in children using modelling and simulation
  • 2013
  • Ingår i: British Journal of Clinical Pharmacology. - : Wiley. - 0306-5251 .- 1365-2125. ; 78:1, s. 158-169
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS: Although genetic, clinical and demographic factors have been shown to explain approximately half of the inter-individual variability in warfarin dose requirement in adults, less is known about causes of dose variability in children. This study aimed to identify and quantify major genetic, clinical and demographic sources of warfarin dose variability in children using modelling and simulation.METHODS: Clinical, demographic and genetic data from 163 children with a median age of 6.3 years (range 0.06-18.9 years), covering over 183 years of warfarin therapy and 6445 INR observations were used to update and optimise a published adult pharmacometric warfarin model for use in children.RESULTS: Genotype effects in children were found to be comparable to what has been reported for adults, with CYP2C9 explaining up to a 4-fold difference in dose (CYP2C9 *1/*1 vs. *3/*3) and VKORC1 explaining up to a 2-fold difference in dose (VKORC1 G/G vs. A/A), respectively. The relationship between bodyweight and warfarin dose was non-linear, with a 3-fold difference in dose for a 4-fold difference in bodyweight. In addition, age, baseline and target INR, and time since initiation of therapy, but not CYP4F2 genotype, had a significant impact on typical warfarin dose requirements in children.CONCLUSIONS: The updated model provides quantitative estimates of major clinical, demographic and genetic factors impacting warfarin dose variability in children. With this new knowledge more individualised dosing regimens can be developed and prospectively evaluated in the pursuit of improving both efficacy and safety of warfarin therapy in children.
  •  
8.
  •  
9.
  • Hamberg, Anna-Karin, et al. (författare)
  • Pharmacogenetics-based warfarin dosing in children
  • 2014
  • Ingår i: Pharmacogenomics (London). - : Future Medicine Ltd. - 1462-2416 .- 1744-8042. ; 15:3, s. 361-374
  • Forskningsöversikt (refereegranskat)abstract
    • Clinical factors, demographic variables and variations in two genes, CYP2C9 and VKORC1, have been shown to contribute to the variability in warfarin dose requirements among adult patients. Less is known about their relative importance for dose variability in children. A few small studies have been reported, but the results have been conflicting, especially regarding the impact of genotypes. In this article, we critically review published pharmacogenetic-based prediction models for warfarin dosing in children, and present results from a head-to-head comparison of predictive performance in a distinct cohort of warfarin-treated children. Finally we discuss what properties a prediction model should have, and what knowledge gaps need to be filled, to improve warfarin therapy in children of all ages.
  •  
10.
  • Hamberg, Anna-Karin, 1964- (författare)
  • Pharmacometric Models for Individualisation of Warfarin in Adults and Children
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Warfarin is one of the most widely used anticoagulants. Therapy is complicated by warfarin’s narrow therapeutic range and pronounced variability in individual dose requirements. Although warfarin therapy is uncommon in children, it is crucial for children with certain congenital or acquired heart diseases. Treatment in children is especially difficult due to the lack of i) a decision support tool for efficient and consistent dose adjustments, and ii) a flexible warfarin formulation for accurate and reproducible dosing.The overall aim of this thesis was to develop a PKPD-based pharmacometric model for warfarin that describes the dose-response relationship over time, and to identify important predictors that influence individual dose requirements both in adults and children. Special emphasis was placed on investigating the contribution of genetic factors to the observed variability.A clinically useful pharmacometric model for warfarin has been developed using NONMEM. The model has been successfully reformulated into a KPD-model that describes the relationship between warfarin dose and INR response, and that is applicable to both adults and children. From a clinical perspective, this is a very important change since it allows the use of information on dose and INR that is available routinely. The model incorporates both patient and clinical characteristics, such as age, weight, CYP2C9 and VKORC1 genotype, and baseline and target INR, for the prediction of an individualised starting dose. It also enables the use of information from previous doses and INR observations to further individualise the dose a posteriori using a Bayesian forecasting method.The NONMEM model has been transferred to a user-friendly, platform independent tool to aid use in clinical practice. The tool can be used for a priori and a posteriori individualisation of warfarin therapy in both adults and children. The tool should ensure consistent dose adjustment practices, and provide more efficient individualisation of warfarin dosing in all patients, irrespective of age, body weight, CYP2C9 or VKORC1 genotype, baseline or target INR. The expected outcome is improved warfarin therapy compared with empirical dosing, with patients achieving a therapeutic and stable INR faster and avoiding high INRs that increase the risk of bleeding.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy