SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wahlgren Mats) ;pers:(Chen Qijun)"

Sökning: WFRF:(Wahlgren Mats) > Chen Qijun

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahuja, Sanjay, et al. (författare)
  • Prediction of solubility on recombinant expression of Plasmodium falciparum erythrocyte membrane protein I domains in Escherichia coli
  • 2006
  • Ingår i: Malaria Journal. - : Springer Science and Business Media LLC. - 1475-2875. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cellular interactions elicited by Plasmodium falciparum erythrocyte membrane protein antigen 1 (PfEMP1) are brought about by multiple DBL ( Duffy binding like), CIDR ( cysteine-rich interdomain region) and C2 domain types. Elucidation of the functional and structural characteristics of these domains is contingent on the abundant availability of recombinant protein in a soluble form. A priori prediction of PfEMP1 domains of the 3D7 genome strain, most likely to be expressed in the soluble form in Escherichia coli was computed and proven experimentally. Methods: A computational analysis correlating sequence-dependent features to likelihood for expression in soluble form was computed and predictions were validated by the colony filtration blot method for rapid identification of soluble protein expression in E. coli. Results: Solubility predictions for all constituent PfEMP1 domains in the decreasing order of their probability to be expressed in a soluble form (% mean solubility) are as follows: ATS (56.7%) > CIDR1 alpha (46.8%) > CIDR2 beta (42.9%) > DBL2-4 gamma (31.7%) > DBL2 beta + C2 (30.6%) > DBL1 alpha (24.9%) > DBL2-7 epsilon (23.1%) > DBL2-5 delta (14.8%). The length of the domains does not correlate to their probability for successful expression in the soluble form. Immunoblot analysis probing for soluble protein confirmed the differential in solubility predictions. Conclusion: The acidic terminal segment ( ATS) and CIDR alpha/beta domain types are suitable for recombinant expression in E. coli while all DBL subtypes (alpha, beta, gamma, delta, epsilon) are a poor choice for obtaining soluble protein on recombinant expression in E. coli. This study has relevance for researchers pursuing functional and structural studies on PfEMP1 domains.
  •  
2.
  • Albrecht, Letusa, et al. (författare)
  • var gene transcription and PfEMP1 expression in the rosetting and cytoadhesive Plasmodium falciparum clone FCR3S1.2
  • 2011
  • Ingår i: Malaria Journal. - : BioMed Central. - 1475-2875. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The pathogenicity of Plasmodium falciparum is in part due to the ability of the parasitized red blood cell (pRBC) to adhere to intra- vascular host cell receptors and serum-proteins. Binding of the pRBC is mediated by Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a large multi-variant molecule encoded by a family of approximate to 60 var genes. Methods: The study of var gene transcription in the parasite clone FCR3S1.2 was performed by semi-quantitative PCR and quantitative PCR (qPCR). The expression of the major PfEMP1 in FCR3S1.2 pRBC was analysed with polyclonal sera in rosette disruption assays and immunofluorecence. Results: Transcripts from var1 (FCR3S1.2(var1); IT4var21) and other var genes were detected by semi-quantitative PCR but results from qPCR showed that one var gene transcript dominated over the others (FCR3S1.2var2; IT4var60). Antibodies raised in rats to the recombinant NTS-DBL1a of var2 produced in E. coli completely and dosedependently disrupted rosettes (approximate to 95% at a dilution of 1/5). The sera reacted with the Maurer's clefts in trophozoite stages (IFA) and to the infected erythrocyte surface (FACS) indicating that FCR3S1.2var2 encodes the dominant PfEMP1 expressed in this parasite. Conclusion: The major transcript in the rosetting model parasite FCR3S1.2 is FCR3S1.2var2 (IT4var60). The results suggest that this gene encodes the PfEMP1-species responsible for the rosetting phenotype of this parasite. The activity of previously raised antibodies to the NTS-DBL1a of FCR3S1.2var1 is likely due to cross-reactivity with NTS-DBL1 alpha of the var2 encoded PfEMP1.
  •  
3.
  • Brolin, M, et al. (författare)
  • Simultaneous transcription of duplicated var2csa gene copies in individual Plasmodium falciparum parasites
  • 2009
  • Ingår i: Genome Biology. - : Springer Science and Business Media LLC. - 1465-6906 .- 1474-760X. ; 10:10, s. R117-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Single nucleotide polymorphisms are common in duplicated genes, causing functional preservation, alteration or silencing. The Plasmodium falciparum genes var2csa and Pf332 are duplicated in the haploid genome of the HB3 parasite line. Whereas the molecular function of Pf332 remains to be elucidated, VAR2CSA is known to be the main adhesin in placental parasite sequestration. Sequence variations introduced upon duplication of these genes provide discriminative possibilities to analyze allele-specific transcription with a bearing towards understanding gene dosage impact on parasite biology. Results: We demonstrate an approach combining real-time PCR allelic discrimination and discriminative RNA-FISH to distinguish between highly similar gene copies in P. falciparum parasites. The duplicated var2csa variants are simultaneously transcribed, both on a population level and intriguingly also in individual cells, with nuclear co-localization of the active genes and corresponding transcripts. This indicates transcriptional functionality of duplicated genes, challenges the dogma of mutually exclusive var gene transcription and suggests mechanisms behind antigenic variation, at least in respect to the duplicated and highly similar var2csa genes. Conclusions: Allelic discrimination assays have traditionally been applied to study zygosity in diploid genomes. The assays presented here are instead successfully applied to the identification and evaluation of transcriptional activity of duplicated genes in the haploid genome of the P. falciparum parasite. Allelic discrimination and gene or transcript localization by FISH not only provide insights into transcriptional regulation of genes such as the virulence associated var genes, but also suggest that this sensitive and precise approach could be used for further investigation of genome dynamics and gene regulation.
  •  
4.
  • Mok, Bobo W., et al. (författare)
  • Default Pathway of var2csa Switching and Translational Repression in Plasmodium falciparum
  • 2008
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 3:4, s. e1982-
  • Tidskriftsartikel (refereegranskat)abstract
    • Antigenic variation is a subtle process of fundamental importance to the survival of a microbial pathogen. In Plasmodium falciparum malaria, PfEMP1 is the major variable antigen and adhesin expressed at the surface of the infected erythrocyte, which is encoded for by members of a family of 60 var-genes. Peri-nuclear repositioning and epigenetic mechanisms control their mono-allelic expression. The switching of PfEMP1 depends in part on variable transition rates and short-lived immune responses to shared minor epitopes. Here we show var-genes to switch to a common gene that is highly transcribed, but sparsely translated into PfEMP1 and not expressed at the erythrocyte surface. Highly clonal and adhesive P. falciparum, which expressed distinct var-genes and the corresponding PfEMP1s at onset, were propagated without enrichment or panning. The parasites successively and spontaneously switched to transcribe a shared var-gene (var2csa) matched by the loss of PfEMP1 surface expression and host cell-binding. The var2csa gene repositioned in the peri-nuclear area upon activation, away from the telomeric clusters and heterochromatin to transcribe spliced, full-length RNA. Despite abundant transcripts, the level of intracellular PfEMP1 was low suggesting post-transcriptional mechanisms to partake in protein expression. In vivo, off-switching and translational repression may constitute one pathway, among others, coordinating PfEMP1 expression.
  •  
5.
  • Pettersson, Fredrik, et al. (författare)
  • Whole-body imaging of sequestration of Plasmodium falciparum in the rat.
  • 2005
  • Ingår i: Infect Immun. - 0019-9567. ; 73:11, s. 7736-46
  • Tidskriftsartikel (refereegranskat)abstract
    • The occlusion of vessels by packed Plasmodium falciparum-infected (iRBC) and uninfected erythrocytes is a characteristic postmortem finding in the microvasculature of patients with severe malaria. Here we have employed immunocompetent Sprague-Dawley rats to establish sequestration in vivo. Human iRBC cultivated in vitro and purified in a single step over a magnet were labeled with 99mtechnetium, injected into the tail vein of the rat, and monitored dynamically for adhesion in the microvasculature using whole-body imaging or imaging of the lungs subsequent to surgical removal. iRBC of different lines and clones sequester avidly in vivo while uninfected erythrocytes did not. Histological examination revealed that a multiadhesive parasite adhered in the larger microvasculature, inducing extensive intravascular changes while CD36- and chondroitin sulfate A-specific parasites predominantly sequester in capillaries, inducing no or minor pathology. Removal of the adhesive ligand Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), preincubation of the iRBC with sera to PfEMP1 or preincubation with soluble PfEMP1-receptors prior to injection significantly reduced the sequestration. The specificity of iRBC binding to the heterologous murine receptors was confirmed in vitro, using primary rat lung endothelial cells and rat lung cryosections. In offering flow dynamics, nonmanipulated endothelial cells, and an intact immune system, we believe this syngeneic animal model to be an important complement to existing in vitro systems for the screening of vaccines and adjunct therapies aiming at the prevention and treatment of severe malaria.
  •  
6.
  • Vogt, Anna M, et al. (författare)
  • Heparan sulfate on endothelial cells mediates the binding of Plasmodium falciparum-infected erythrocytes via the DBL1alpha domain of PfEMP1
  • 2003
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 101:6, s. 2405-2411
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmodium falciparum may cause severe forms of malaria when excessive sequestration of infected and uninfected erythrocytes occurs in vital organs. The capacity of wild-type isolates of P falciparum-infected erythrocytes (parasitized red blood cells [pRBCs]) to bind glycosaminoglycans (GAGs) such as heparin has been identified as a marker for severe disease. Here we report that pRBCs of the parasite FCR3S1.2 and wild-type clinical isolates from Uganda adhere to heparan sulfate (HS) on endothelial cells. Binding to human umbilical vein endothelial cells (HUVECs) and to human lung endothelial cells (HLECs) was found to be inhibited by HS/heparin or enzymes that remove HS from cell surfaces. (35)S-labeled HS extracted from HUVECs bound directly to the pRBCs' membrane. Using recombinant proteins corresponding to the different domains of P falciparum erythrocyte membrane protein 1 (PfEMP1), we identified Duffy-binding-like domain-1alpha (DBL1alpha) as the ligand for HS. DBL1alpha bound in an HS-dependent way to endothelial cells and blocked the adherence of pRBCs in a dose-dependent manner. (35)S-labeled HS bound to DBL1alpha-columns and eluted as a distinct peak at 0.4 mM NaCl. (35)S-labeled chondroitin sulfate (CS) of HUVECs did not bind to PfEMP1 or to the pRBCs' membrane. Adhesion of pRBCs of FCR3S1.2 to platelet endothelial cell adhesion molecule-1 (PECAM-1)/CD31, mediated by the cysteine-rich interdomain region 1alpha (CIDR1alpha), was found be operative with, but independent of, the binding to HS. HS and the previously identified HS-like GAG on uninfected erythrocytes may act as coreceptors in endothelial and erythrocyte binding of rosetting parasites, causing excessive sequestration of both pRBCs and RBCs.
  •  
7.
  • Vogt, Anna M., et al. (författare)
  • Release of sequestered malaria parasites upon injection of a glycosaminoglycan
  • 2006
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 2:9, s. 853-863
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe human malaria is attributable to an excessive sequestration of Plasmodium falciparum-infected and uninfected erythrocytes in vital organs. Strains of P. falciparum that form rosettes and employ heparan sulfate as a host receptor are associated with development of severe forms of malaria. Heparin, which is similar to heparan sulfate in that it is composed of the same building blocks, was previously used in the treatment of severe malaria, but it was discontinued due to the occurrence of serious side effects such as intracranial bleedings. Here we report to have depolymerized heparin by periodate treatment to generate novel glycans (dGAG) that lack anticoagulant-activity. The dGAGs disrupt rosettes, inhibit merozoite invasion of erythrocytes and endothelial binding of P. falciparum-infected erythrocytes in vitro, and reduce sequestration in in vivo models of severe malaria. An intravenous injection of dGAGs blocks up to 80% of infected erythrocytes from binding in the micro-vasculature of the rat and releases already sequestered parasites into circulation. P. falciparum-infected human erythrocytes that sequester in the non-human primate Macaca fascicularis were similarly found to be released in to the circulation upon a single injection of 500 mu g of dGAG. We suggest dGAGs to be promising candidates for adjunct therapy in severe malaria.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy