SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wallace P.) srt2:(2015-2019);srt2:(2016);pers:(Ehrhardt T.)"

Sökning: WFRF:(Wallace P.) > (2015-2019) > (2016) > Ehrhardt T.

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Aartsen, M. G., et al. (författare)
  • Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube
  • 2016
  • Ingår i: Journal of Instrumentation. - 1748-0221 .- 1748-0221. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe and report the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously, high-energy gamma-ray telescopes have restricted fields of view and in general are unlikely to be observing a potential neutrino-flaring source at the time such neutrinos are recorded. The use of neutrino-triggered alerts thus aims at increasing the availability of simultaneous multi-messenger data during potential neutrino flaring activity, which can increase the discovery potential and constrain the phenomenological interpretation of the high-energy emission of selected source classes (e. g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals and its operation are presented, along with first results of the program operating between 14 March 2012 and 31 December 2015.
  •  
3.
  • Adrian-Martinez, S., et al. (författare)
  • The First Combined Search For Neutrino Point-Sources In The Southern Hemisphere With The Antares And Icecube Neutrino Telescopes
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 823:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results of searches for point-like sources of neutrinos based on the first combined analysis of data from both the ANTARES and IceCube neutrino telescopes. The combination of both detectors, which differ in size and location, forms a window in the southern sky where the sensitivity to point sources improves by up to a factor of 2 compared with individual analyses. Using data recorded by ANTARES from 2007 to 2012, and by IceCube from 2008 to 2011, we search for sources of neutrino emission both across the southern sky and from a preselected list of candidate objects. No significant excess over background has been found in these searches, and flux upper limits for the candidate sources are presented for E-2.5 and E-2 power-law spectra with different energy cut-offs.
  •  
4.
  • Aartsen, M. G., et al. (författare)
  • Observation And Characterization Of A Cosmic Muon Neutrino Flux From The Northern Hemisphere Using Six Years Of Icecube Data
  • 2016
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 833:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube Collaboration has previously discovered a high-energy astrophysical neutrino flux using neutrino events with interaction vertices contained within the instrumented volume of the IceCube detector. We present a complementary measurement using charged current muon neutrino events where the interaction vertex can be outside this volume. As a consequence of the large muon range the effective area is significantly larger but the field of view is restricted to the Northern Hemisphere. IceCube data from 2009 through 2015 have been analyzed using a likelihood approach based on the reconstructed muon energy and zenith angle. At the highest neutrino energies between 194 TeV and 7.8 PeV a significant astrophysical contribution is observed, excluding a purely atmospheric origin of these events at 5.6 sigma significance. The data are well described by an isotropic, unbroken power-law flux with a normalization at 100 TeV neutrino energy of (0.90(-0.27)(+0.30)) x 10(-18) GeV-1 cm(-2) s(-1) sr(-1) and a hard spectral index of gamma = 2.13 +/- 0.13. The observed spectrum is harder in comparison to previous IceCube analyses with lower energy thresholds which may indicate a break in the astrophysical neutrino spectrum of unknown origin. The highest-energy event observed has a reconstructed muon energy of (4.5 +/- 1.2) PeV which implies a probability of less than 0.005% for this event to be of atmospheric origin. Analyzing the arrival directions of all events with reconstructed muon energies above 200 TeV no correlation with known gamma-ray sources was found. Using the high statistics of atmospheric neutrinos we report the current best constraints on a prompt atmospheric muon neutrino flux originating from charmed meson decays which is below 1.06 in units of the flux normalization of the model in Enberg et al.
  •  
5.
  • Aartsen, M. G., et al. (författare)
  • Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10 PeV with IceCube
  • 2016
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 117:24
  • Tidskriftsartikel (refereegranskat)abstract
    • We report constraints on the sources of ultrahigh-energy cosmic rays (UHECRs) above 10(9) GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high-energy neutrino-induced events which have deposited energies from 5 x 10(5) GeV to above 10(11) GeV. Two neutrino-induced events with an estimated deposited energy of (2.6 +/- 0.3) x 10(6) GeV, the highest neutrino energy observed so far, and (7.7 +/- 2.0) x 10(5) GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6 sigma. The hypothesis that the observed events are of cosmogenic origin is also rejected at > 99% CL because of the limited deposited energy and the nonobservation of events at higher energy, while their observation is consistent with an astrophysical origin. Our limits on cosmogenic neutrino fluxes disfavor the UHECR sources having a cosmological evolution stronger than the star formation rate, e.g., active galactic nuclei and gamma-ray bursts, assuming proton-dominated UHECRs. Constraints on UHECR sources including mixed and heavy UHECR compositions are obtained for models of neutrino production within UHECR sources. Our limit disfavors a significant part of parameter space for active galactic nuclei and new-born pulsar models. These limits on the ultrahigh-energy neutrino flux models are the most stringent to date.
  •  
6.
  • Aartsen, M. G., et al. (författare)
  • Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry
  • 2016
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :4
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an improved event-level likelihood formalism for including neutrino telescope data in global fits to new physics. We derive limits on spin-dependent dark matter-proton scattering by employing the new formalism in a re-analysis of data from the 79-string IceCube search for dark matter annihilation in the Sun, including explicit energy information for each event. The new analysis excludes a number of models in the weak-scale minimal supersymmetric standard model (MSSM) for the first time. This work is accompanied by the public release of the 79-string IceCube data, as well as an associated computer code for applying the new likelihood to arbitrary dark matter models.
  •  
7.
  • Aartsen, M. G., et al. (författare)
  • Search For Sources Of High-Energy Neutrons With Four Years Of Data From The Icetop Detector
  • 2016
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 830:2
  • Tidskriftsartikel (refereegranskat)abstract
    • IceTop is an air-shower array located on the Antarctic ice sheet at the geographic South Pole. IceTop can detect an astrophysical flux of neutrons from Galactic sources as an excess of cosmic-ray air showers arriving from the source direction. Neutrons are undeflected by the Galactic magnetic field and can typically travel 10 (E/PeV) pc before decay. Two searches are performed using 4 yr of the IceTop data set to look for a statistically significant excess of events with energies above 10 PeV (10(16) eV) arriving within a small solid angle. The all-sky search method covers from -90 degrees to approximately -50 degrees in declination. No significant excess is found. A targeted search is also performed, looking for significant correlation with candidate sources in different target sets. This search uses a higher-energy cut (100 PeV) since most target objects lie beyond 1 kpc. The target sets include pulsars with confirmed TeV energy photon fluxes and high-mass X-ray binaries. No significant correlation is found for any target set. Flux upper limits are determined for both searches, which can constrain Galactic neutron sources and production scenarios.
  •  
8.
  • Aartsen, M. G., et al. (författare)
  • All-flavour search for neutrinos from dark matter annihilations in the Milky Way with IceCube/DeepCore
  • 2016
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 76:10
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first IceCube search for a signal of dark matter annihilations in the Milky Way using all-flavour neutrino-induced particle cascades. The analysis focuses on the DeepCore sub-detector of IceCube, and uses the surrounding IceCube strings as a veto region in order to select starting events in the DeepCore volume. We use 329 live-days of data from IceCube operating in its 86-string configuration during 2011-2012. No neutrino excess is found, the final result being compatible with the background-only hypothesis. From this null result, we derive upper limits on the velocity-averaged self-annihilation cross-section, , for dark matter candidate masses ranging from 30 GeV up to 10 TeV, assuming both a cuspy and a flat-cored dark matter halo profile. For dark matter masses between 200 GeV and 10 TeV, the results improve on all previous IceCube results on , reaching a level of 10 cm s, depending on the annihilation channel assumed, for a cusped NFW profile. The analysis demonstrates that all-flavour searches are competitive with muon channel searches despite the intrinsically worse angular resolution of cascades compared to muon tracks in IceCube.
  •  
9.
  • Aartsen, M. G., et al. (författare)
  • An All-Sky Search For Three Flavors Of Neutrinos From Gamma-Ray Bursts With The Icecube Neutrino Observatory
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 824:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results and methodology of a search for neutrinos produced in the decay of charged pions created in interactions between protons and gamma-rays during the prompt emission of 807 gamma-ray bursts (GRBs) over the entire sky. This three-year search is the first in IceCube for shower-like Cherenkov light patterns from electron, muon, and tau neutrinos correlated with GRBs. We detect five low-significance events correlated with five GRBs. These events are consistent with the background expectation from atmospheric muons and neutrinos. The results of this search in combination with those of IceCube's four years of searches for track-like Cherenkov light patterns from muon neutrinos correlated with Northern-Hemisphere GRBs produce limits that tightly constrain current models of neutrino and ultra high energy cosmic ray production in GRB fireballs.
  •  
10.
  • Aartsen, M. G., et al. (författare)
  • Anisotropy In Cosmic-Ray Arrival Directions In The Southern Hemisphere Based On Six Years Of Data From The Icecube Detector
  • 2016
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 826:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube Neutrino Observatory accumulated a total of 318 billion cosmic-ray-induced muon events between 2009 May and 2015 May. This data set was used for a detailed analysis of the sidereal anisotropy in the arrival directions of cosmic rays in the TeV to PeV energy range. The observed global sidereal anisotropy features large regions of relative excess and deficit, with amplitudes of the order of 10(-3) up to about 100 TeV. A decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (l <= 4) moments. However, higher multipole components are found to be statistically significant down to an angular scale of less than 10 degrees, approaching the angular resolution of the detector. Above 100 TeV, a change in the morphology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5 PeV, the highest energies currently accessible to IceCube. No time dependence of the large-and small-scale structures is observed in the period of six years covered by this analysis. The high-statistics data set reveals more details of the properties of the anisotropy and is potentially able to shed light on the various physical processes that are responsible for the complex angular structure and energy evolution.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy