SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Walther Thomas) ;hsvcat:2"

Sökning: WFRF:(Walther Thomas) > Teknik

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hosseinpourpia, Reza, 1983-, et al. (författare)
  • Hydrophobic Formulations Based on Tall Oil Distillation Products for High-Density Fiberboards
  • 2020
  • Ingår i: Materials. - : MDPI. - 1996-1944 .- 1996-1944. ; 13:18, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigates the effect of renewable formulations based on tall oil bio-refinery products on the water vapor sorption and interfiber strength of cellulosic fibers as well as on the properties of high-density fiberboard (HDF) panels. The results obtained for HDF prepared using renewable formulations were compared to the results for HDF obtained using conventional synthetic paraffin wax (hydrowax), which is the hydrophobic agent currently utilized by the industry. Four tall oil distillation products (TODPs) with different levels of fatty and rosin acids were used for preparing the hydrophobic formulations with furfuryl alcohol as an organic solvent. According to determinations with an automated vapor sorption apparatus, the formulations had a similar effect with hydrowax on the sorption behavior of natural fibers. Unlike to hydrowax treatment, the ultimate tensile strength of cellulosic paper-sheets treated with the formulations remained unchanged or significantly increased. At the standard addition load of 1% (wt/wt dry fibers) of the formulations, HDF panels showed comparable and only in one case, e.g., TODP3-based formulation, slightly higher thickness swelling (24 h) than those with hydrowax. The best performing formulation (TODP2-based) in terms of tensile strength of paper sheets did not significantly change the mechanical properties of HDF panels in both standard climate and high humid conditions. Promising results at the standard and humid climate conditions were obtained for HDF panels manufactured with higher TODP2-based formulation amounts (3-5%) and reduced melamine-urea-formaldehyde resin content (10-12% instead of 14%, wt dry resin/wt dry fibers).
  •  
2.
  • Neitzel, Nicolas, et al. (författare)
  • Chemical composition, particle geometry, and micro-mechanical strength of barley husks, oat husks, and wheat bran as alternative raw materials for particleboards
  • 2023
  • Ingår i: Materials Today Communications. - : Elsevier. - 2352-4928. ; 36
  • Tidskriftsartikel (refereegranskat)abstract
    • Particleboards are used worldwide in various industry segments, like construction and furniture production. Nevertheless, increase in wood prices and logistical challenges urge the particleboard industry to find alternative raw materials. By-products and residues from the agricultural and food industries could offer possibilities for material sourcing at a local level. This study aimed to investigate the chemical composition, particle geometry, anatomical structure, and microtensile characteristics of such material, specifically barley husks (BH), oat husks (OH), and wheat bran (WB). Barley and oat husks were found to have comparable hemicelluloses and lignin contents to industrial wood chips but contained more ash. Wheat bran was rich in extractives and showed high buffering capacity. Light microscopy and microcomputed tomography revealed details of leaf structure for BH and OH as well as the multi-layer structure of WB. The ultimate microtensile strength of BH, various OH samples, and WB were respectively 2.77 GPa, 0.84-2.42 GPa, and 1.45 GPa. The results indicated that the studied materials could have potential uses as furnish materials in non-load bearing particleboards, where thermal or acoustic insulation properties are desirable.
  •  
3.
  • Ahmed, Sheikh Ali, Senior Lecturer, 1977-, et al. (författare)
  • Resonance and time-of-flight methods for evaluating the modulus of elasticity of particleboards at different humid conditions
  • 2020
  • Ingår i: Wood research. - Slovakia : Slovak Forest Products Research Institute. - 1336-4561. ; 65:3, s. 365-380
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-destructive testing of wood panels by either resonance or time-of-flight (TOF) methods provides possibilities for predicting their static bending properties. In the present study, three non-destructive devices (BING - Beam Identification by Non-destructive Grading by CIRAD, Montpellier, France, Fakopp Ultrasonic Timer and Sylvatest TRIO) were used for measuring the dynamic stiffness of different particleboard types. Fakopp Ultrasonic Timer and Sylvatest TRIO produce ultrasonic pulses to measure the sound velocity while BING uses resonance frequencies. Commercially produced particleboards with different thickness and densities were used to measure the dynamic modulus of elasticity (MOEdyn) in two directions (parallel and perpendicular to the production line) and at three different humidity levels (dry - 35%, standard - 65% and wet - 85% RH in constant temperature of 20°C ). MOEdyn of particleboards were correlated with the static moduli of elasticity (MOEstat) and rupture (MORstat). It was found that the non-destructive methods gave higher MOEdyn values in both production directions than that of MOEstat values. MOEdyn was found to decrease from dry to wet conditions. A very strong and statistically significant correlation existed between MOEdyn and static bending properties. MOEdyn correlated stronger to MOEstat than MORstat. At different humidity level, all three methods- Fakopp Ultrasonic Timer, BING and Sylvatest TRIO analyses showed good predicting capabilities to estimate MOEstat and MORstat of different particleboard types with high level of accuracy.
  •  
4.
  • Jiang, Wen, et al. (författare)
  • Properties and Emissions of Three-Layer Particleboards Manufactured with Mixtures of Wood Chips and Partially Liquefied Bark
  • 2023
  • Ingår i: Materials. - : MDPI. - 1996-1944. ; 16:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Partial liquefaction of residual biomass shows good potential for developing new materials suitable for making bio-based composites. Three-layer particleboards were produced by replacing virgin wood particles with partially liquefied bark (PLB) in the core or surface layers. PLB was prepared by the acid-catalyzed liquefaction of industrial bark residues in polyhydric alcohol. The chemical and microscopic structure of bark and residues after liquefaction were evaluated by means of Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM), while the particleboards were tested for their mechanical and water-related properties, as well as their emission profiles. Through a partial liquefaction process, some FTIR absorption peaks of the bark residues were lower than those of raw bark, indicating hydrolysis of chemical compounds. The surface morphology of bark did not change considerably after partial liquefaction. Particleboards with PLB in the core layers showed overall lower densities and mechanical properties (modulus of elasticity, modulus of rupture, and internal bond strength), and were less water-resistant as compared to the ones with PLB used in the surface layers. Formaldehyde emissions from the particleboards were 0.284–0.382 mg/m2·h, and thus, below the E1 class limit required by European Standard EN 13986:2004. The major emissions of volatile organic compounds (VOCs) were carboxylic acids as oxidization and degradation products from hemicelluloses and lignin. The application of PLB in three-layer particleboards is more challenging than in single-layer boards as PLB has different effects on the core and surface layers.
  •  
5.
  • Neitzel, Nicolas, et al. (författare)
  • Alternative Materials from Agro-Industry for Wood Panel Manufacturing—A Review
  • 2022
  • Ingår i: Materials. - : MDPI. - 1996-1944 .- 1996-1944. ; 15:13, s. 4542-4542
  • Tidskriftsartikel (refereegranskat)abstract
    • The growing demand for wood-based panels for buildings and furniture and the increasing worldwide concern for reducing the pressure on forest resources require alternatives to wood raw materials. The agricultural industry not only can provide raw materials from non-wood plants but also numerous residues and side streams. This review supplies an overview of the availability, chemical composition, and fiber characteristics of non-wood lignocellulosic materials and agricultural residues, i.e., grow care residues, harvest residues, and process residues, and their relevance for use in wood panel manufacturing. During the crop harvest, there are millions of tons of residues in the form of stalks, among other things. Usually, these are only available seasonally without using storage capacity. Process residues, on the other hand, can be taken from ongoing production and processed further. Fiber characteristics and chemical composition affect the panel properties. Alternatives to wood with long fibers and high cellulose content offer sufficient mechanical strength in different panel types. In general, the addition of wood substitutes up to approximately 30% provides panels with the required strength properties. However, other parameters must be considered, such as pressing temperature, adhesive type, press levels, and pretreatments of the raw material. The search for new raw materials for wood panels should focus on availability throughout the year, the corresponding chemical requirements and market competition. Panel type and production process can be adapted to different raw materials to fit niche products.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy