SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wang Shi) ;lar1:(cth);pers:(Liu Y.)"

Search: WFRF:(Wang Shi) > Chalmers University of Technology > Liu Y.

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fenstermacher, M.E., et al. (author)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Journal article (peer-reviewed)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Dang, D. F., et al. (author)
  • Manipulating backbone structure with various conjugated spacers to enhance photovoltaic performance of D-A-type two-dimensional copolymerse
  • 2014
  • In: Organic Electronics: physics, materials, applications. - : Elsevier BV. - 1566-1199. ; 15:11, s. 2876-2884
  • Journal article (peer-reviewed)abstract
    • A class of low band-gap two-dimensional conjugated polymers of PBDTT-FQ PBDTT-TQ PBDTT-BTQ and PBDTT-TTQ was designed and synthesized, which contains the same di(alkylthiophene)-substituted benzo[1,2-b:4,5-b']dithiophene (BDTT) and 6,7-difluoro-quinoxaline (Q) units, as well as various conjugated spacers of furan, thiophene, bithiophene and thieno[3,2-b]thiophene in the main chain. Significant effect of the varied spacers between the BDTT and Q units on the thermal, optical, electrochemical and photovoltaic properties was investigated and observed for these two-dimensional copolymers in the polymer solar cells. The maximum power conversion efficiency of 5.9% with a short circuit current of 13.7 mA/cm(2) and a fill factor of 0.56 was obtained for the PBDTT-TQ with thiophene spacer in the bulk hetero-junction PSCs using [6,6]-phenyl-C-71-butyric acid methyl ester as acceptor.
  •  
3.
  •  
4.
  •  
5.
  • Dong, B., et al. (author)
  • Local surface plasmon resonance of single silver nanorice particles in the near-infrared
  • 2014
  • In: Mikrochimica Acta. - : Springer Science and Business Media LLC. - 1436-5073 .- 0026-3672. ; 181:7-8, s. 791-795
  • Journal article (peer-reviewed)abstract
    • We report on the synthesis and optical spectra of silver nanorice particles. Two strong absorption bands are resolved in the near UV and near-IR region, and the dark field scattering spectra are consistent with the absorption spectra. Finite-difference time-domain simulations reveal that the peak in the IR region can be attributed to the E field that is parallel to the long axis, while the peak in the UV can be attributed to the E field perpendicular to the short axis of the silver nanorice particles.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view