SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Tao) "

Sökning: WFRF:(Wang Tao)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
6.
  • Chen, Ji, et al. (författare)
  • The trans-ancestral genomic architecture of glycemic traits
  • 2021
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 53:6, s. 840-860
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
  •  
7.
  • Kristanl, Matej, et al. (författare)
  • The Seventh Visual Object Tracking VOT2019 Challenge Results
  • 2019
  • Ingår i: 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW). - : IEEE COMPUTER SOC. - 9781728150239 ; , s. 2206-2241
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative. Results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis as well as the standard VOT methodology for long-term tracking analysis. The VOT2019 challenge was composed of five challenges focusing on different tracking domains: (i) VOT-ST2019 challenge focused on short-term tracking in RGB, (ii) VOT-RT2019 challenge focused on "real-time" short-term tracking in RGB, (iii) VOT-LT2019 focused on long-term tracking namely coping with target disappearance and reappearance. Two new challenges have been introduced: (iv) VOT-RGBT2019 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2019 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019 datasets were refreshed while new datasets were introduced for VOT-RGBT2019 and VOT-RGBD2019. The VOT toolkit has been updated to support both standard short-term, long-term tracking and tracking with multi-channel imagery. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website(1).
  •  
8.
  • Bixby, H., et al. (författare)
  • Rising rural body-mass index is the main driver of the global obesity epidemic in adults
  • 2019
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 569:7755, s. 260-4
  • Tidskriftsartikel (refereegranskat)abstract
    • Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.
  •  
9.
  •  
10.
  • Kristan, Matej, et al. (författare)
  • The Sixth Visual Object Tracking VOT2018 Challenge Results
  • 2019
  • Ingår i: Computer Vision – ECCV 2018 Workshops. - Cham : Springer Publishing Company. - 9783030110086 - 9783030110093 ; , s. 3-53
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge VOT2018 is the sixth annual tracker benchmarking activity organized by the VOT initiative. Results of over eighty trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis and a “real-time” experiment simulating a situation where a tracker processes images as if provided by a continuously running sensor. A long-term tracking subchallenge has been introduced to the set of standard VOT sub-challenges. The new subchallenge focuses on long-term tracking properties, namely coping with target disappearance and reappearance. A new dataset has been compiled and a performance evaluation methodology that focuses on long-term tracking capabilities has been adopted. The VOT toolkit has been updated to support both standard short-term and the new long-term tracking subchallenges. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website (http://votchallenge.net).
  •  
Skapa referenser, mejla, bekava och länka
Typ av publikation
tidskriftsartikel (375)
konferensbidrag (18)
forskningsöversikt (11)
rapport (2)
bokkapitel (1)
annan publikation (1)
visa fler...
doktorsavhandling (1)
visa färre...
Typ av innehåll
refereegranskat (402)
övrigt vetenskapligt (7)
Författare/redaktör
Wang, Tao (72)
Wang, Q. (19)
Li, T. (17)
Zhu, CL (16)
Salomaa, V (15)
He, J (15)
visa fler...
Wang, Xiaoyang, 1965 (15)
Zhu, Changlian, 1964 (15)
Xu, L. (14)
Zhou, B. (14)
Peters, A (14)
Evans, A. (14)
Lee, J. (14)
Gudnason, V (14)
Wang, XY (14)
Wang, T. (13)
Yang, Y. (13)
Liu, J. (13)
Kim, J. (13)
Wang, Y. (13)
Djalalinia, S (13)
Farzadfar, F (13)
Malekzadeh, R (13)
Panda-Jonas, S (13)
Shibuya, K (13)
Sobngwi, E (13)
Topor-Madry, R (13)
Qorbani, M (13)
Alkerwi, A (13)
Zhou, K. (13)
Fischer, K (13)
Cooper, C. (13)
Visvikis-Siest, S (13)
Dehghan, A (13)
Vollenweider, P. (13)
Lehtimaki, T. (13)
Rahman, M (13)
Bruno, G. (12)
Zeng, Y. (12)
Diaz, A. (12)
Yang, L. (12)
Brenner, H (12)
Santos, R. (12)
Lin, X. (12)
Hofman, A (12)
Simon, M. (12)
Al-Raddadi, R (12)
Linneberg, A (12)
Chen, FF (12)
Taylor, A (12)
visa färre...
Lärosäte
Lunds universitet (74)
Kungliga Tekniska Högskolan (72)
Uppsala universitet (67)
Karolinska Institutet (57)
Göteborgs universitet (41)
Linköpings universitet (40)
visa fler...
Chalmers tekniska högskola (37)
Umeå universitet (36)
Stockholms universitet (34)
Örebro universitet (8)
Mittuniversitetet (7)
Luleå tekniska universitet (5)
Högskolan i Gävle (5)
Sveriges Lantbruksuniversitet (5)
Linnéuniversitetet (3)
Högskolan Dalarna (2)
Mälardalens universitet (1)
Malmö universitet (1)
Högskolan i Skövde (1)
Karlstads universitet (1)
Naturhistoriska riksmuseet (1)
visa färre...
Språk
Engelska (409)
Kinesiska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (180)
Medicin och hälsovetenskap (110)
Teknik (82)
Lantbruksvetenskap (13)
Samhällsvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy