SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Wang Tao)
 

Search: WFRF:(Wang Tao) > Doctoral thesis > Application of Rare...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Application of Rare-Earth Doped Ceria and Natural Minerals for Solid Oxide Fuel Cells

Liu, Yanyan, 1987- (author)
KTH,Energiteknik,Solid Oxide Fuel Cells
Martin, Andrew R., 1968- (thesis advisor)
KTH,Kraft- och värmeteknologi,Energiteknik
Wang, Wujun, 1984- (thesis advisor)
KTH,Kraft- och värmeteknologi
show more...
Tao, Shanwen, Professor (opponent)
School of Engineering, University of Warwick, UK
show less...
 (creator_code:org_t)
ISBN 9789178732777
Stockholm : KTH Royal Institute of Technology, 2019
English 109 s.
Series: TRITA-ITM-AVL ; 2019:24
  • Doctoral thesis (other academic/artistic)
Abstract Subject headings
Close  
  • Although solid oxide fuel cell (SOFC) technology exhibits considerable advantages as compared to other energy conversion devices, e.g. high efficiency, low emission and fuel flexibility, its high operating temperature leads to rapid component degradation and has thus hampered commercialization. In recent years, intensive research interests have been devoted to lowering the operating temperature from the elevated temperature region (800-1,000 ℃) to intermediate or low-temperature range (<800 ℃). To achieve this goal, material selection plays a dominant role, involving improving the conductivity of existing electrolytes and developing new exploitable materials. This dissertation is focused on enhancing the ionic conductivity of rare-earth oxides (principally doped ceria) and exploring new candidate materials (e.g. natural minerals) for low temperature (LT) SOFCs.In this work, the scientific contributions can be divided into four aspects:i)                To develop desirable superionic conductors, Sm3+/Pr3+/Nd3+ triple-doped ceria is designed to realize the desired doping for Sm3+ in bulk and Pr3+/Nd3+ at surface domains via a two-step wet chemical co-precipitation method. It exhibits high ionic conductivity, 0.125 S cm-1 at 600 ℃. The SOFC device using this material as electrolyte displays a high output power density of 710 mW cm-2 at 550 ℃.ii)              To further clarify the individual effect of Pr3+ in the doped ceria, a single-element (Pr3+) doped ceria is studied, exhibiting a mixed electronic/ionic conduction property, capable of being employed as the core component of electrolyte-layer free solid oxide fuel cells (EFFCs).iii)             To investigate various rare-earth doped-ceria materials in double- and triple-element doping solutions for LT-SOFCs, Sm3+/Ca2+ co-doped ceria and La3+/Pr3+/Nd3+ triple-doped ceria are synthesized and then further incorporated with semiconductors, e.g. La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) or Ni0.8Co0.15Al0.05Li-oxide (NCAL), to serve as a semiconducting-ionic conducting membrane in EFFCs.iv)             To exploit the feasibility of natural mineral cuprospinel (CuFe2O4) as an alternative material for LT-SOFCs, three different types of fuel cell devices are fabricated and tested. The device using CuFe2O4 as cathode exhibits a maximum power density of 180 mW cm-2 with an open circuit voltage of 1.07 V at 550 °C, while the device using a homogeneous mixture membrane of CuFe2O4, Li2O-ZnO-Sm0.2Ce0.8O2 (LZSDC), and LiNi0.8Co0.15Al0.05O2 (NCAL) demonstrates an improved power output, 587 mW cm-2 under the same measurement conditions.  Based on this work, a new triple-doping strategy is exploited to improve the ionic conductivity of doped ceria materials by surface- and bulk-doping methodology. Furthermore, the material developments of single-phase mixed electronic/ionic conducting doped ceria and doped ceria/semiconductor composites are realized and verify the feasibility of EFFC technology. Investigations on CuFe2O4 indicate the utility of natural minerals in developing cost-effective materials for LT-SOFCs.    
  • Även om fastoxid bränslecellers (SOFC) uppvisar signifikanta fördelar jämfört med andra energiomvandlingstekniker, t.ex. hög verkningsgrad, låga emissioner och bränsleflexibilitet, leder dess höga driftstemperatur till snabb komponentdegradering, vilken har hindrat kommersialiseringen. Under de senaste åren har intensiv forskning ägnats åt att sänka driftstemperaturerna från de höga temperaturregionerna (800-1,000 °C) till mellanliggande eller låga temperaturintervaller (<800 ℃). För att uppnå detta mål spelar materialvalet en dominerande roll, vilket bland annat innebär att man förbättrar ledningsförmågan hos befintliga elektrolyter och utvecklar nya material. Denna avhandling fokuserar på att förbättra den jonledande förmågan hos oxider av sällsynta jordartsmetaller, huvudsakligen dopad ceriumoxid, samt forskning på nya kandidatmaterial, t.ex. naturliga mineraler.I det här arbetet kan det vetenskapliga bidraget delas in i fyra aspekter:i)                Att utveckla en trippel-dopingmetodik för att syntetisera önskvärda superjoniska ledningsförmågor i Sm3+/Pr3+/Nd3+ dopad ceriumoxid. Detta material konstruerades med hjälp av en tvåstegs våtkemisk samutfällningsmetod för att åstadkomma en önskad dopning för Sm3+ i bulk och Pr3+/Nd3+ vid ytdomäner. Materialet uppvisar en hög jonisk ledningsförmåga, 0.125 S cm-1 vid 600 ℃. En SOFC-enhet som använder denna trippeldopade ceriumoxid som elektrolyt har uppvisat en hög effekttäthet på 710 mW cm-2 vid 550 ℃;ii)              För att ytterligare klargöra den individuella effekten av Pr3+ i det dopade ceriummaterialet studerades enfas Pr-dopade ceria, vilken uppvisade en blandad elektronisk/jonisk ledningsegenskap som skulle användas som kärnkomponent i avancerad elektrolytskiktsfri fastoxid bränsleceller (EFFC).iii)             Att undersöka olika sällsynta jordartade dopade ceriummaterial i lösningar med dubbel- och trippelelement (Sm3+/Ca2+ och La3+/Pr3+/Nd3+) applicerade för SOFC-teknik med låg temperatur. De dubbel- och tripeldopade ceriummaterialen var sammansatta med halvledare, dvs Ni0.8Co0.15Al0.05Li-oxid (NCAL) och La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) för att fungera som en halvledande jonisk ledande membran i EFFCs.iv)             Att utnyttja naturligt kopparspinell (CuFe2O4) som ett alternativt material för SOFC. För första gången tillverkades tre olika typer av anordningar för att undersöka den optimala appliceringen av CuFe2O4 i SOFC. Enheten med CuFe2O4 som katodkatalysator uppvisade en maximal effekttäthet av 180 mW cm-2 med en öppen kretsspänning 1.07 V vid 550 ℃. En effekttäthet på 587 mW cm-2 emellertid uppnådes från anordningen bestående av ett homogentblandat membran med CuFe2O4, Li2O-ZnO-Sm0.2Ce0.8O2 och LiNi0.8Co0.15Al0.05O2.Baserat på detta arbete utnyttjades en ny strategi för att förbättra jonledningsförmågan hos dopade ceriummaterial genom yt- och bulkdopningsmetodik. Vidare verifierades utvecklingen av EFFC-teknikens tillförlitlighet av enfasad, blandad elektronisk/jonledande dopade ceriumoxid samt jonledande multidopade ceria-och halvledarkompositer. Dessa resultat visar att naturliga mineraler kan spela en viktig roll för att utveckla kostnadseffektiva material för bränsleceller.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Energiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Energy Engineering (hsv//eng)

Keyword

Low-temperature solid oxide fuel cells; Doped ceria; Material characterizations; Electrochemical performances; Natural minerals
Lågtemperatur fastoxidbränsleceller; Dopade ceriumoxid; Materialkarakteriseringar; Elektrokemiska prestanda; Naturliga mineraler.
Energy Technology
Energiteknik
Teknisk materialvetenskap
Materials Science and Engineering
Chemical Engineering
Kemiteknik

Publication and Content Type

vet (subject category)
dok (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Liu, Yanyan, 198 ...
Martin, Andrew R ...
Wang, Wujun, 198 ...
Tao, Shanwen, Pr ...
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Mechanical Engin ...
and Energy Engineeri ...
Parts in the series
By the university
Royal Institute of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view