SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wang Xiaoliang) ;lar1:(cth)"

Sökning: WFRF:(Wang Xiaoliang) > Chalmers tekniska högskola

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Huang, Zhifeng, et al. (författare)
  • Three-dimensional posture optimization for biped robot stepping over large ditch based on a ducted-fan propulsion system
  • 2020
  • Ingår i: IEEE International Conference on Intelligent Robots and Systems. - 2153-0858 .- 2153-0866. ; , s. 3591-3597
  • Konferensbidrag (refereegranskat)abstract
    • The recent progress of an ongoing project utilizing a ducted-fan propulsion system to improve a humanoid robot's ability to step over large ditches is reported. A novel method (GAS) based on the genetic algorithm with smoothness constraint can effectively minimize the thrust by optimizing the robot's posture during 3D stepping. The significant advantage of the method is that it can realize the continuity and smoothness of the thrust and pelvis trajectories. The method enables the landing point of the robot's swing foot to be not only in the forward but also in a side direction. The methods were evaluated by simulation and by being applied on a prototype robot, JetHR1. By keeping a quasistatic balance, the robot could step over a ditch with a span of 450 mm (as much as 97% of the length of the robot's leg) in 3D stepping.
  •  
2.
  • Wang, Yifan, et al. (författare)
  • Composite Data Driven-based Adaptive Control for a Piezoelectric Linear Motor
  • 2022
  • Ingår i: IEEE Transactions on Instrumentation and Measurement. - 1557-9662 .- 0018-9456. ; 71
  • Tidskriftsartikel (refereegranskat)abstract
    • Piezoelectric linear motors play an important role in ultra-precision manufacturing technology. However, the complex nonlinear relationship between the input and output of the piezoelectric linear motors limits their further application. In this paper, to achieve precise motion control for a piezoelectric linear motor, a composite data driven-based adaptive control method is proposed, consisting of a correction controller, model free adaptive controller (MFAC), and low pass filter. The proposed control method addresses the demand for a precise model of the piezoelectric linear motor and solely relies on the linear model and input/output measurement data. First, an experimental test is implemented to analyze the complex nonlinearity between input and output signals of the controlled system, and a correction control is employed based on the dynamic linear sub-model of the piezoelectric linear motor to improve its dynamic and static characteristics. Then, to avoid the influence of unmodeled dynamics, such as inherent nonlinearity and external vibration, a MFAC is established as a feedback controller using data driven technology. In addition, a low pass filter is incorporated into the feedback loop to eliminate high frequency measurement noise in the system, thus improving the transient response of the MFAC method. Finally, the theoretical analysis of the error convergence is presented. The effectiveness of the proposed method is verified via comparisons with a correction control method, correction control-based digital sliding-mode control method, and correction control-based MFAC method. The experimental results indicate that the proposed control method is suitable for engineering applications. In particular, the root-mean-square error (RMSE) for the third-order S-curve tracking using the proposed is reduced by more than 15%, compared with the RMSEs for the cases with contrast control methods.
  •  
3.
  • Wang, Yifan, et al. (författare)
  • Time delay recursive neural network-based direct adaptive control for a piezo-actuated stage
  • 2023
  • Ingår i: Science China Technological Sciences. - 1869-1900 .- 1674-7321. ; 66:5, s. 1397-1407
  • Tidskriftsartikel (refereegranskat)abstract
    • Piezo-actuated stage is a core component in micro-nano manufacturing field. However, the inherent nonlinearity, such as rate-dependent hysteresis, in the piezo-actuated stage severely impacts its tracking accuracy. This study proposes a direct adaptive control (DAC) method to realize high precision tracking. The proposed controller is designed by a time delay recursive neural network. Compared with those existing DAC methods designed under the general Lipschitz condition, the proposed control method can be easily generalized to the actual systems, which have hysteresis behavior. Then, a hopfield neural network (HNN) estimator is proposed to adjust the parameters of the proposed controller online. Meanwhile, a modular model consisting of linear submodel, hysteresis submodel, and lumped uncertainties is established based on the HNN estimator to describe the piezo-actuated stage in this study. Thus, the performance of the HNN estimator can be exhibited visually through the modeling results. The proposed control method eradicates the adverse effects on the control performance arising from the inaccuracy in establishing the offline model and improves the capability to suppress the influence of hysteresis on the tracking accuracy of piezo-actuated stage in comparison with the conventional DAC methods. The stability of the control system is studied. Finally, a series of comparison experiments with a dual neural networks-based data driven adaptive controller are carried out to demonstrate the superiority of the proposed controller.
  •  
4.
  • Yang, Guang, et al. (författare)
  • Improved Interoperability Evaluation Method for Wireless Charging Systems Based on Interface Impedance
  • 2021
  • Ingår i: IEEE Transactions on Power Electronics. - 0885-8993 .- 1941-0107. ; 36:8, s. 8588-8592
  • Tidskriftsartikel (refereegranskat)abstract
    • The interoperability between the vehicle assembly (VA) and ground assembly (GA) of wireless charging systems has been specified in international standards. SAE J2954 first proposed an interoperability evaluation method based on interface impedance. However, the impedance measurement is challenging at high frequency since the phase difference between the voltage and current is not easy to measure accurately, especially when it is close to 90. Small errors in phase angle measurement are amplified in impedance calculation due to the sine/cosine function. This letter proposes an impedance measurement method using the power decomposition algorithm. By decomposing the input power into two orthogonal components, the impedance angle can be calculated without directly measuring the phase difference between the voltage and current. Thus, the measurement results of the impedance angle do not introduce errors. With the proposal, the high-cost probe or complex high-precision phase difference measurement circuit is not needed. The experimental results show that the conventional methods maximum relative error reaches 80%, making interoperability hard to determine. Reversely, with the proposed method, the relative error of impedance measurement is reduced to less than 10%.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
Typ av publikation
tidskriftsartikel (3)
konferensbidrag (1)
Typ av innehåll
refereegranskat (4)
Författare/redaktör
Huang, Xiaoliang, 19 ... (4)
Wang, Yifan (2)
Cao, Wenjing (2)
Zhou, Miaolei (2)
Yang, Guang (1)
Li, Jin (1)
visa fler...
Wang, Chao (1)
Zhang, Yun (1)
Huang, Zhifeng (1)
Wang, Zijun (1)
Wei, Jiapeng (1)
Yu, Jingtao (1)
Zhou, Yuhao (1)
Lao, Pihao (1)
Zhang, Xuexi (1)
Song, Kai (1)
Huang, Xiaohua (1)
Zhu, Chunbo (1)
Hou, Dawei (1)
Shen, Chuan Liang (1)
visa färre...
Lärosäte
Språk
Engelska (4)
Forskningsämne (UKÄ/SCB)
Teknik (4)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy