SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Watne Leiv Otto) ;pers:(Amlien Inge K.)"

Sökning: WFRF:(Watne Leiv Otto) > Amlien Inge K.

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fjell, Anders M., et al. (författare)
  • Is short sleep bad for the brain? : Brain structure and cognitive function in short sleepers
  • 2023
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 43:28, s. 5241-5250
  • Tidskriftsartikel (refereegranskat)abstract
    • Many sleep less than recommended without experiencing daytime sleepiness. According to prevailing views, short sleep increases risk of lower brain health and cognitive function. Chronic mild sleep deprivation could cause undetected sleep debt, negatively affecting cognitive function and brain health. However, it is possible that some have less sleep need and are more resistant to negative effects of sleep loss. We investigated this using a cross-sectional and longitudinal sample of 47,029 participants of both sexes (20-89 years) from the Lifebrain consortium, Human Connectome project (HCP) and UK Biobank (UKB), with measures of self-reported sleep, including 51,295 MRIs of the brain and cognitive tests. A total of 740 participants who reported to sleep <6 h did not experience daytime sleepiness or sleep problems/disturbances interfering with falling or staying asleep. These short sleepers showed significantly larger regional brain volumes than both short sleepers with daytime sleepiness and sleep problems (n = 1742) and participants sleeping the recommended 7-8 h (n = 3886). However, both groups of short sleepers showed slightly lower general cognitive function (GCA), 0.16 and 0.19 SDs, respectively. Analyses using accelerometer-estimated sleep duration confirmed the findings, and the associations remained after controlling for body mass index, depression symptoms, income, and education. The results suggest that some people can cope with less sleep without obvious negative associations with brain morphometry and that sleepiness and sleep problems may be more related to brain structural differences than duration. However, the slightly lower performance on tests of general cognitive abilities warrants closer examination in natural settings.SIGNIFICANCE STATEMENT: Short habitual sleep is prevalent, with unknown consequences for brain health and cognitive performance. Here, we show that daytime sleepiness and sleep problems are more strongly related to regional brain volumes than sleep duration. However, participants sleeping ≤6 h had slightly lower scores on tests of general cognitive function (GCA). This indicates that sleep need is individual and that sleep duration per se is very weakly if at all related brain health, while daytime sleepiness and sleep problems may show somewhat stronger associations. The association between habitual short sleep and lower scores on tests of general cognitive abilities must be further scrutinized in natural settings.
  •  
2.
  • Fjell, Anders M., et al. (författare)
  • No phenotypic or genotypic evidence for a link between sleep duration and brain atrophy
  • 2023
  • Ingår i: Nature Human Behaviour. - : Springer Nature. - 2397-3374. ; 7:11, s. 2008-2022
  • Tidskriftsartikel (refereegranskat)abstract
    • Short sleep is held to cause poorer brain health, but is short sleep associated with higher rates of brain structural decline? Analysing 8,153 longitudinal MRIs from 3,893 healthy adults, we found no evidence for an association between sleep duration and brain atrophy. In contrast, cross-sectional analyses (51,295 observations) showed inverse U-shaped relationships, where a duration of 6.5 (95% confidence interval, (5.7, 7.3)) hours was associated with the thickest cortex and largest volumes relative to intracranial volume. This fits converging evidence from research on mortality, health and cognition that points to roughly seven hours being associated with good health. Genome-wide association analyses suggested that genes associated with longer sleep for below-average sleepers were linked to shorter sleep for above-average sleepers. Mendelian randomization did not yield evidence for causal impacts of sleep on brain structure. The combined results challenge the notion that habitual short sleep causes brain atrophy, suggesting that normal brains promote adequate sleep duration—which is shorter than current recommendations.
  •  
3.
  • Fjell, Anders M., et al. (författare)
  • Poor Self-Reported Sleep is Related to Regional Cortical Thinning in Aging but not Memory Decline-Results From the Lifebrain Consortium
  • 2021
  • Ingår i: Cerebral Cortex. - : Oxford University Press. - 1047-3211 .- 1460-2199. ; 31:4, s. 1953-1969
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined whether sleep quality and quantity are associated with cortical and memory changes in cognitively healthy participants across the adult lifespan. Associations between self-reported sleep parameters (Pittsburgh Sleep Quality Index, PSQI) and longitudinal cortical change were tested using five samples from the Lifebrain consortium (n = 2205, 4363 MRIs, 18-92 years). In additional analyses, we tested coherence with cell-specific gene expression maps from the Allen Human Brain Atlas, and relations to changes in memory performance. "PSQI # 1 Subjective sleep quality" and "PSQI #5 Sleep disturbances" were related to thinning of the right lateral temporal cortex, with lower quality and more disturbances being associated with faster thinning. The association with "PSQI #5 Sleep disturbances" emerged after 60 years, especially in regions with high expression of genes related to oligodendrocytes and S1 pyramidal neurons. None of the sleep scales were related to a longitudinal change in episodic memory function, suggesting that sleep-related cortical changes were independent of cognitive decline. The relationship to cortical brain change suggests that self-reported sleep parameters are relevant in lifespan studies, but small effect sizes indicate that self-reported sleep is not a good biomarker of general cortical degeneration in healthy older adults.
  •  
4.
  • Fjell, Anders M., et al. (författare)
  • Self-reported sleep relates to hippocampal atrophy across the adult lifespan : results from the Lifebrain consortium
  • 2020
  • Ingår i: Sleep. - : Oxford University Press. - 0161-8105 .- 1550-9109. ; 43:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: Poor sleep is associated with multiple age-related neurodegenerative and neuropsychiatric conditions. The hippocampus plays a special role in sleep and sleep-dependent cognition, and accelerated hippocampal atrophy is typically seen with higher age. Hence, it is critical to establish how the relationship between sleep and hippocampal volume loss unfolds across the adult lifespan.Methods: Self-reported sleep measures and MRI-derived hippocampal volumes were obtained from 3105 cognitively normal participants (18–90 years) from major European brain studies in the Lifebrain consortium. Hippocampal volume change was estimated from 5116 MRIs from 1299 participants for whom longitudinal MRIs were available, followed up to 11 years with a mean interval of 3.3 years. Cross-sectional analyses were repeated in a sample of 21,390 participants from the UK Biobank.Results: No cross-sectional sleep—hippocampal volume relationships were found. However, worse sleep quality, efficiency, problems, and daytime tiredness were related to greater hippocampal volume loss over time, with high scorers showing 0.22% greater annual loss than low scorers. The relationship between sleep and hippocampal atrophy did not vary across age. Simulations showed that the observed longitudinal effects were too small to be detected as age-interactions in the cross-sectional analyses.Conclusions: Worse self-reported sleep is associated with higher rates of hippocampal volume decline across the adult lifespan. This suggests that sleep is relevant to understand individual differences in hippocampal atrophy, but limited effect sizes call for cautious interpretation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy