SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Webster Matthew T.) ;pers:(Grant Peter R.)"

Search: WFRF:(Webster Matthew T.) > Grant Peter R.

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Rands, Chris M., et al. (author)
  • Insights into the evolution of Darwin's finches from comparative analysis of the Geospiza magnirostris genome sequence
  • 2013
  • In: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 14, s. 95-
  • Journal article (peer-reviewed)abstract
    • Background: A classical example of repeated speciation coupled with ecological diversification is the evolution of 14 closely related species of Darwin's (Galapagos) finches (Thraupidae, Passeriformes). Their adaptive radiation in the Galapagos archipelago took place in the last 2-3 million years and some of the molecular mechanisms that led to their diversification are now being elucidated. Here we report evolutionary analyses of genome of the large ground finch, Geospiza magnirostris. Results: 13,291 protein-coding genes were predicted from a 991.0 Mb G. magnirostris genome assembly. We then defined gene orthology relationships and constructed whole genome alignments between the G. magnirostris and other vertebrate genomes. We estimate that 15% of genomic sequence is functionally constrained between G. magnirostris and zebra finch. Genic evolutionary rate comparisons indicate that similar selective pressures acted along the G. magnirostris and zebra finch lineages suggesting that historical effective population size values have been similar in both lineages. 21 otherwise highly conserved genes were identified that each show evidence for positive selection on amino acid changes in the Darwin's finch lineage. Two of these genes (Igf2r and Pou1f1) have been implicated in beak morphology changes in Darwin's finches. Five of 47 genes showing evidence of positive selection in early passerine evolution have cilia related functions, and may be examples of adaptively evolving reproductive proteins. Conclusions: These results provide insights into past evolutionary processes that have shaped G. magnirostris genes and its genome, and provide the necessary foundation upon which to build population genomics resources that will shed light on more contemporaneous adaptive and non-adaptive processes that have contributed to the evolution of the Darwin's finches.
  •  
2.
  • Almén, Markus Sällman, et al. (author)
  • Adaptive radiation of Darwin's finches revisited using whole genome sequencing
  • 2016
  • In: Bioessays. - : Wiley. - 0265-9247 .- 1521-1878. ; 38:1, s. 14-20
  • Journal article (peer-reviewed)abstract
    • We recently used genome sequencing to study the evolutionary history of the Darwin's finches. A prominent feature of our data was that different polymorphic sites in the genome tended to indicate different genetic relationships among these closely related species. Such patterns are expected in recently diverged genomes as a result of incomplete lineage sorting. However, we uncovered conclusive evidence that these patterns have also been influenced by interspecies hybridisation, a process that has likely played an important role in the radiation of Darwin's finches. A major discovery was that segregation of two haplotypes at the ALX1 locus underlies variation in beak shape among the Darwin's finches, and that differences between the two haplotypes in a 240 kb region in blunt and pointed beaked birds involve both coding and regulatory changes. As we review herein, the evolution of such adaptive haplotypes comprising multiple causal changes appears to be an important mechanism contributing to the evolution of biodiversity.
  •  
3.
  • Lamichhaney, Sangeet, 1984-, et al. (author)
  • A beak size locus in Darwin’s finches facilitated character displacement during a drought
  • 2016
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 352:6284, s. 470-474
  • Journal article (peer-reviewed)abstract
    • Ecological character displacement is a process of morphological divergence that reducescompetition for limited resources. We used genomic analysis to investigate the geneticbasis of a documented character displacement event in Darwin’s finches on Daphne Majorin the Galápagos Islands: The medium ground finch diverged from its competitor, the largeground finch, during a severe drought. We discovered a genomic region containing theHMGA2gene that varies systematically among Darwin’s finch species with different beaksizes. Two haplotypes that diverged early in the radiation were involved in the characterdisplacement event: Genotypes associated with large beak size were at a strong selectivedisadvantage in medium ground finches (selection coefficients= 0.59). Thus, a majorlocus has apparently facilitated a rapid ecological diversification in the adaptive radiationof Darwin’s finches.
  •  
4.
  • Lamichhaney, Sangeet, et al. (author)
  • Evolution of Darwin's finches and their beaks revealed by genome sequencing
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7539
  • Journal article (peer-reviewed)abstract
    • Darwin's finches, inhabiting the Galapagos archipelago and Cocos Island, constitute an iconic model for studies of speciation and adaptive evolution. Here we report the results of whole-genome re-sequencing of 120 individuals representing all of the Darwin's finch species and two close relatives' Phylogenetic analysis reveals important discrepancies with the phenotype-based taxonomy. We find extensive evidence for interspecific gene flow throughout the radiation. Hybridization has given rise to species of mixed ancestry. A 240 kilobase haplotype encompassing the ALX1 gene that encodes a transcription factor affecting craniofacial. development is strongly associated with beak shape diversity across Darwin's finch species as well as within the medium ground finch (Geospiza fortis) a species that has undergone rapid evolution of beak shape in response to environmental changes. The ALX1 haplotype has contributed to diversification of beak shapes among the Darwin's finches and thereby, to an expanded utilization of food resources.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view