SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wechsler Reya Robert) "

Sökning: WFRF:(Wechsler Reya Robert)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bandopadhayay, Pratiti, et al. (författare)
  • BET Bromodomain Inhibition of MYC-Amplified Medulloblastoma
  • 2014
  • Ingår i: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 20:4, s. 912-925
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose:MYC-amplified medulloblastomas are highly lethal tumors. Bromodomain and extraterminal (BET) bromodomain inhibition has recently been shown to suppress MYC-associated transcriptional activity in other cancers. The compound JQ1 inhibits BET bromodomain-containing proteins, including BRD4. Here, we investigate BET bromodomain targeting for the treatment of MYC-amplified medulloblastoma.Experimental Design:We evaluated the effects of genetic and pharmacologic inhibition of BET bromodomains on proliferation, cell cycle, and apoptosis in established and newly generated patient- and genetically engineered mouse model (GEMM)-derived medulloblastoma cell lines and xenografts that harbored amplifications of MYC or MYCN. We also assessed the effect of JQ1 on MYC expression and global MYC-associated transcriptional activity. We assessed the in vivo efficacy of JQ1 in orthotopic xenografts established in immunocompromised mice.Results:Treatment of MYC-amplified medulloblastoma cells with JQ1 decreased cell viability associated with arrest at G1 and apoptosis. We observed downregulation of MYC expression and confirmed the inhibition of MYC-associated transcriptional targets. The exogenous expression of MYC from a retroviral promoter reduced the effect of JQ1 on cell viability, suggesting that attenuated levels of MYC contribute to the functional effects of JQ1. JQ1 significantly prolonged the survival of orthotopic xenograft models of MYC-amplified medulloblastoma (P < 0.001). Xenografts harvested from mice after five doses of JQ1 had reduced the expression of MYC mRNA and a reduced proliferative index.Conclusion:JQ1 suppresses MYC expression and MYC-associated transcriptional activity in medulloblastomas, resulting in an overall decrease in medulloblastoma cell viability. These preclinical findings highlight the promise of BET bromodomain inhibitors as novel agents for MYC-amplified medulloblastoma.
  •  
2.
  •  
3.
  • Bolin, Sara, 1988-, et al. (författare)
  • Dormant SOX9-positive cells behind MYC-driven medulloblastoma recurrence
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor recurrence is a slow biological process involving therapy resistance, immune escape, and metastasis and is the leading cause of death in medulloblastoma, the most frequent malignant pediatric brain tumor. By studying paired primary-recurrent patient samples and patient-derived xenografts we identified a significant accumulation of SOX9-positive cells in relapses and metastases. They exist as rare, quiescent cells in Group 3 and Group 4 patients that constitute two-thirds of medulloblastoma. To follow relapse at the single-cell level we developed an inducible dual Tet model of MYC-driven MB, where MYC can be directed from treatment-sensitive bulk cells to resistant, dormant SOX9-positive cells by doxycycline. SOX9 promoted immune es-cape, DNA repair suppression and was essential for recurrence. Tumor cell dormancy was non-hierarchical, migratory, and depended on MYC suppression by SOX9 to promote relapse. By using computational modeling and treatment we further showed how doxorubicin and MGMT inhibitors are specifically targeting relapsing cells.
  •  
4.
  • Čančer, Matko, et al. (författare)
  • Humanized Stem Cell Models of Pediatric Medulloblastoma Reveal an Oct4/mTOR Axis that Promotes Malignancy
  • 2019
  • Ingår i: Cell Stem Cell. - : CELL PRESS. - 1934-5909 .- 1875-9777. ; 25:6, s. 855-870
  • Tidskriftsartikel (refereegranskat)abstract
    • Medulloblastoma (MB), the most frequent malignant childhood brain tumor, can arise from cellular malfunctions during hindbrain development. Here we generate humanized models for Sonic Hedgehog (SHH)-subgroup MB via MYCN overexpression in primary human hindbrain-derived neuroepithelial stem (hbNES) cells or iPSC-derived NES cells, which display a range of aggressive phenotypes upon xenografting. iPSC-derived NES tumors develop quickly with leptomeningeal dissemination, whereas hbNES-derived cells exhibit delayed tumor formation with less dissemination. Methylation and expression profiling show that tumors from both origins recapitulate hallmarks of infant SHH MB and reveal that mTOR activation, as a result of increased Oct4, promotes aggressiveness of human SHH tumors. Targeting mTOR decreases cell viability and prolongs survival, showing the utility of these varied models for dissecting mechanisms mediating tumor aggression and demonstrating the value of humanized models for a better understanding of pediatric cancers.
  •  
5.
  •  
6.
  • Kahn, Suzana A., et al. (författare)
  • Notch1 regulates the initiation of metastasis and self-renewal of Group 3 medulloblastoma
  • 2018
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Medulloblastoma is the most common malignant brain tumor of childhood. Group 3 medulloblastoma, the most aggressive molecular subtype, frequently disseminates through the leptomeningeal cerebral spinal fluid (CSF) spaces in the brain and spinal cord. The mechanism of dissemination through the CSF remains poorly understood, and the molecular pathways involved in medulloblastoma metastasis and self-renewal are largely unknown. Here we show that NOTCH1 signaling pathway regulates both the initiation of metastasis and the self-renewal of medulloblastoma. We identify a mechanism in which NOTCH1 activates BMI1 through the activation of TWIST1. NOTCH1 expression and activity are directly related to medulloblastoma metastasis and decreased survival rate of tumor-bearing mice. Finally, medulloblastoma-bearing mice intrathecally treated with anti-NRR1, a NOTCH1 blocking antibody, present lower frequency of spinal metastasis and higher survival rate. These findings identify NOTCH1 as a pivotal driver of Group 3 medulloblastoma metastasis and self-renewal, supporting the development of therapies targeting this pathway.
  •  
7.
  • Northcott, Paul A, et al. (författare)
  • Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma.
  • 2014
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836. ; 511:7510, s. 428-428
  • Tidskriftsartikel (refereegranskat)abstract
    • Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy