SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wei Yong jie) ;hsvcat:2"

Sökning: WFRF:(Wei Yong jie) > Teknik

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sun, Shuangxi, 1986, et al. (författare)
  • Cooling hot spots by hexagonal boron nitride heat spreaders
  • 2015
  • Ingår i: Proceedings - Electronic Components and Technology Conference. - 0569-5503. - 9781479986095 ; http://www.grapchina.com/Fhzt/view/id/96.html
  • Konferensbidrag (refereegranskat)abstract
    • As the electronic systems become smaller and faster, a thinner and higher-efficiency heat spreader is demanded to meet the thermal dissipation requirement. In this work, we proposed a layered hBN film based heat spreader to dissipate the thermal energy generated by hot spots on high power chips. The liquid phase exfoliation method was employed to synthesize hBN flakes. Different layers of hBN film were characterized using SEM, TEM and Raman spectroscopy. Afterwards, the films were directly attached onto the target power chips. The power chips were integrated with temperature sensor and hot spot in order to analyze the thermal performance of the hBN heat spreader. IR Camera was used to capture the heat spreading effect of the hBN heat spreader and monitor the temperature distribution around the hot spot. The temperature at the hot spot driven by a heat flux of around 600W/cm2 was decreased by about 20% compared to the sample without the BN film. The potential of using hBN heat spreader for cooling hot spots was demonstrated in this work.
  •  
2.
  • Meng, Long, et al. (författare)
  • Dynamic Response of 6MW Spar Type Floating Offshore Wind Turbine by Experiment and Numerical Analyses
  • 2020
  • Ingår i: China Ocean Engineering. - : Springer Science and Business Media LLC. - 0890-5487 .- 2191-8945. ; 34:5, s. 608-620
  • Tidskriftsartikel (refereegranskat)abstract
    • The floating offshore wind turbine (FOWT) is widely used for harvesting marine wind energy. Its dynamic responses under offshore wind and wave environment provide essential reference for the design and installation. In this study, the dynamic responses of a 6MW Spar type FOWT designed for the water depth of 100 m are investigated by means of the wave tank experiment and numerical analysis. A scaled model is manufactured for the experiment at a ratio of 65.3, while the numerical model is constructed on the open-source platform FAST (Fatigue, Aerodynamics, Structures, and Turbulence). Still water tests, wind-induced only tests, wave-induced only tests and combined wind-wave-current tests are all conducted experimentally and numerically. The accuracy of the experimental set-up as well as the loading generation has been verified. Surge, pitch and heave motions are selected to analyze and the numerical results agree well with the experimental values. Even though results obtained by using the FOWT calculation model established in FAST software show some deviations from the test results, the trends are always consistent. Both experimental and numerical studies demonstrate that they are reliable for the designed 6MW Spar type FOWT.
  •  
3.
  • Pecunia, Vincenzo, et al. (författare)
  • Roadmap on energy harvesting materials
  • 2023
  • Ingår i: Journal of Physics. - : IOP Publishing. - 2515-7639. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere.
  •  
4.
  • Zeng, Xiao, et al. (författare)
  • A scoping study on remelting process of a debris bed in the lower head of reactor pressure vessel
  • 2023
  • Ingår i: Annals of Nuclear Energy. - : Elsevier BV. - 0306-4549 .- 1873-2100. ; 189
  • Tidskriftsartikel (refereegranskat)abstract
    • Coolability and retention of core melt (corium) in the lower head of reactor pressure vessel (RPV) has been accepted as a severe accident management strategy to maintain the reactor pressure vessel (RPV) integrity of a light water reactor. To qualify the in-vessel melt retention strategy, lots of studies have been performed to investigate the natural convection heat transfer of a melt pool in the lower head. However, little work has been attributed to the precursory phase of the melt pool, i.e., the remelting process of a debris bed which is formed in the lower head at the very beginning of corium relocation from the core the lower head. The present study is motivated to conduct an experimental study on the debris remelting process. For this purpose, a dedicated test facility named COREM (COrium REMelting) is conceived and constructed, which features internal heating of electromagnetic induction and visualization of debris remelting dynamics. The test section is a semicircular vessel representing a slice of scaled-down RPV lower head, whose front and back walls are made of transparent tempered glass which facilitate visualization and induction heating of the debris bed. Fiber probes with multiple optical temperature sensors are mounted in the semicircular wall of the test section to measure its temperature distribution. In the scoping test, n-octanol and Wood's metal are selected as the simulant materials of metallic and oxidic components of corium, respectively, and their particles ware loaded in the test section to form a debris bed. This paper presents the first two scoping tests which have been performed with the COREM facility so far, under different mixing ratios of two debris materials. The measured data include the photography of debris remelting processes and the temperatures in the debris bed and the semicircular wall. Based on the temperature distributions, heat flux profile along the semicircular vessel wall is also estimated. The scoping tests well reproduce the dynamic process of debris remelting, with two distinct stages of fusion of n-octanol and Wood's metal, i.e., melting successively from low to high melting-point debris particles. During the remelting process, the vessel wall temperatures increase with the polar angle firstly and then decrease gradually, leading to the highest temperature appearing in the middle of the lower layer of the stratified molten pool which is finally formed.
  •  
5.
  • Zhang, Lixiu, et al. (författare)
  • Advances in the Application of Perovskite Materials
  • 2023
  • Ingår i: NANO-MICRO LETTERS. - : SHANGHAI JIAO TONG UNIV PRESS. - 2311-6706. ; 15:1
  • Forskningsöversikt (refereegranskat)abstract
    • Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allow metal halide perovskite to be employed in a wide variety of applications. This article provides a holistic review over the current progress and future prospects of metal halide perovskite materials in representative promising applications, including traditional optoelectronic devices (solar cells, light-emitting diodes, photodetectors, lasers), and cutting-edge technologies in terms of neuromorphic devices (artificial synapses and memristors) and pressure-induced emission. This review highlights the fundamentals, the current progress and the remaining challenges for each application, aiming to provide a comprehensive overview of the development status and a navigation of future research for metal halide perovskite materials and devices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy