SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(West Christina) ;pers:(Sjödin Andreas)"

Sökning: WFRF:(West Christina) > Sjödin Andreas

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lif Holgerson, Pernilla, et al. (författare)
  • A longitudinal study of the development of the saliva microbiome in infants 2 days to 5 years compared to the microbiome in adolescents
  • 2020
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding oral microbiota programming attracts increasing interest due to its importance for oral health and potential associations with systemic diseases. Here the oral microbiota was longitudinally characterized in children from 2 days (n = 206) to 5 years of age and in young adults (n = 175) by sequencing of the v3-v4 region of the 16S rRNA gene from saliva extracted DNA. Alpha diversity increased by age, with 2-day- and 3-month-old infants in one sub-group, and 18-month- and 3-year-old children in another. Firmicutes decreased up to 3 years of age, whereas Proteobacteria, Actinobacteria, Bacteroidetes and Fusobacteria abundances increased. Abiotrophia, Actinomyces, Capnocytophaga, Corynebacterium, Fusobacterium, Kingella, Leptotrichia, Neisseria and Porphyromonas appeared from 18-months of age. This was paralleled by expansions in the core microbiome that continued up to adulthood. The age-related microbiota transformation was paralleled by functional alterations, e.g., changed metabolic pathways that reflected e.g., breastfeeding and increasing proportions of anaerobic species. Oral microbiotas differed by feeding mode and weakly by mode of delivery, but not gender, pacifier use or cleaning method or probiotic intake. The study shows that the saliva microbiota is diverse 2 days after birth and under transformation up to 5 years of age and beyond, with fluctuations possibly reflecting age-related environmental influences.
  •  
2.
  •  
3.
  • Sjödin, Kotryna Simonyté, et al. (författare)
  • Targeting the gut-lung axis by synbiotic feeding to infants in a randomized controlled trial
  • 2023
  • Ingår i: BMC Biology. - : BioMed Central (BMC). - 1741-7007. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Formula-fed infants are at increased risk of infections. Due to the cross-talk between the mucosal systems of the gastrointestinal and respiratory tracts, adding synbiotics (prebiotics and probiotics) to infant formula may prevent infections even at distant sites. Infants that were born full term and weaned from breast milk were randomized to prebiotic formula (fructo- and galactooligosaccharides) or the same prebiotic formula with Lactobacillus paracasei ssp. paracasei F19 (synbiotics) from 1 to 6 months of age. The objective was to examine the synbiotic effects on gut microbiota development. RESULTS: Fecal samples collected at ages 1, 4, 6, and 12 months were analyzed using 16S rRNA gene sequencing and a combination of untargeted gas chromatography-mass spectrometry/liquid chromatography-mass spectrometry. These analyses revealed that the synbiotic group had a lower abundance of Klebsiella, a higher abundance of Bifidobacterium breve compared to the prebiotic group, and increases in the anti-microbial metabolite d-3-phenyllactic acid. We also analyzed the fecal metagenome and antibiotic resistome in the 11 infants that had been diagnosed with lower respiratory tract infection (cases) and 11 matched controls using deep metagenomic sequencing. Cases with lower respiratory tract infection had a higher abundance of Klebsiella species and antimicrobial resistance genes related to Klebsiella pneumoniae, compared to controls. The results obtained using 16S rRNA gene amplicon and metagenomic sequencing were confirmed in silico by successful recovery of the metagenome-assembled genomes of the bacteria of interest. CONCLUSIONS: This study demonstrates the additional benefit of feeding specific synbiotics to formula-fed infants over prebiotics only. Synbiotic feeding led to the underrepresentation of Klebsiella, enrichment of bifidobacteria, and increases in microbial degradation metabolites implicated in immune signaling and in the gut-lung and gut-skin axes. Our findings support future clinical evaluation of synbiotic formula in the prevention of infections and associated antibiotic treatment as a primary outcome when breastfeeding is not feasible. TRIAL REGISTRATION: ClinicalTrials.gov NCT01625273. Retrospectively registered on 21 June 2012.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy