SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Weyhenmeyer Gesa A.) ;pers:(Laudon Hjalmar)"

Sökning: WFRF:(Weyhenmeyer Gesa A.) > Laudon Hjalmar

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hintz, William D., et al. (författare)
  • Current water quality guidelines across North America and Europe do not protect lakes from salinization
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Human-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization—indicated as elevated chloride (Cl−) concentration—will affect lake food webs and if two of the lowest Cl− thresholds found globally are sufficient to protect these food webs. Our results indicated that salinization will cause substantial zooplankton mortality at the lowest Cl− thresholds established in Canada (120 mg Cl−/L) and the United States (230 mg Cl−/L) and throughout Europe where Cl− thresholds are generally higher. For instance, at 73% of our study sites, Cl− concentrations that caused a ≥50% reduction in cladoceran abundance were at or below Cl− thresholds in Canada, in the United States, and throughout Europe. Similar trends occurred for copepod and rotifer zooplankton. The loss of zooplankton triggered a cascading effect causing an increase in phytoplankton biomass at 47% of study sites. Such changes in lake food webs could alter nutrient cycling and water clarity and trigger declines in fish production. Current Cl− thresholds across North America and Europe clearly do not adequately protect lake food webs. Water quality guidelines should be developed where they do not exist, and there is an urgent need to reassess existing guidelines to protect lake ecosystems from human-induced salinization.
  •  
2.
  • Arnott, Shelley E., et al. (författare)
  • Widespread variation in salt tolerance within freshwater zooplankton species reduces the predictability of community-level salt tolerance
  • 2023
  • Ingår i: Limnology and Oceanography Letters. - : John Wiley & Sons. - 2378-2242. ; 8:1, s. 8-18
  • Tidskriftsartikel (refereegranskat)abstract
    • The salinization of freshwaters is a global threat to aquatic biodiversity. We quantified variation in chloride (Cl-) tolerance of 19 freshwater zooplankton species in four countries to answer three questions: (1) How much variation in Cl- tolerance is present among populations? (2) What factors predict intraspecific variation in Cl- tolerance? (3) Must we account for intraspecific variation to accurately predict community Cl- tolerance? We conducted field mesocosm experiments at 16 sites and compiled acute LC(50)s from published laboratory studies. We found high variation in LC(50)s for Cl- tolerance in multiple species, which, in the experiment, was only explained by zooplankton community composition. Variation in species-LC50 was high enough that at 45% of lakes, community response was not predictable based on species tolerances measured at other sites. This suggests that water quality guidelines should be based on multiple populations and communities to account for large intraspecific variation in Cl- tolerance.
  •  
3.
  • Hebert, Marie-Pier, et al. (författare)
  • Lake salinization drives consistent losses of zooplankton abundance and diversity across coordinated mesocosm experiments
  • 2023
  • Ingår i: Limnology and Oceanography Letters. - : John Wiley & Sons. - 2378-2242. ; 8:1, s. 19-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Human-induced salinization increasingly threatens inland waters; yet we know little about the multifaceted response of lake communities to salt contamination. By conducting a coordinated mesocosm experiment of lake salinization across 16 sites in North America and Europe, we quantified the response of zooplankton abundance and (taxonomic and functional) community structure to a broad gradient of environmentally relevant chloride concentrations, ranging from 4 to ca. 1400 mg Cl- L-1. We found that crustaceans were distinctly more sensitive to elevated chloride than rotifers; yet, rotifers did not show compensatory abundance increases in response to crustacean declines. For crustaceans, our among-site comparisons indicate: (1) highly consistent decreases in abundance and taxon richness with salinity; (2) widespread chloride sensitivity across major taxonomic groups (Cladocera, Cyclopoida, and Calanoida); and (3) weaker loss of functional than taxonomic diversity. Overall, our study demonstrates that aggregate properties of zooplankton communities can be adversely affected at chloride concentrations relevant to anthropogenic salinization in lakes.
  •  
4.
  • Björnerås, C., et al. (författare)
  • Widespread Increases in Iron Concentration in European and North American Freshwaters
  • 2017
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 31:10, s. 1488-1500
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent reports of increasing iron (Fe) concentrations in freshwaters are of concern, given the fundamental role of Fe in biogeochemical processes. Still, little is known about the frequency and geographical distribution of Fe trends or about the underlying drivers. We analyzed temporal trends of Fe concentrations across 340 water bodies distributed over 10 countries in northern Europe and North America in order to gain a clearer understanding of where, to what extent, and why Fe concentrations are on the rise. We found that Fe concentrations have significantly increased in 28% of sites, and decreased in 4%, with most positive trends located in northern Europe. Regions with rising Fe concentrations tend to coincide with those with organic carbon (OC) increases. Fe and OC increases may not be directly mechanistically linked, but may nevertheless be responding to common regional-scale drivers such as declining sulfur deposition or hydrological changes. A role of hydrological factors was supported by covarying trends in Fe and dissolved silica, as these elements tend to stem from similar soil depths. A positive relationship between Fe increases and conifer cover suggests that changing land use and expanded forestry could have contributed to enhanced Fe export, although increases were also observed in nonforested areas. We conclude that the phenomenon of increasing Fe concentrations is widespread, especially in northern Europe, with potentially significant implications for wider ecosystem biogeochemistry, and for the current browning of freshwaters.
  •  
5.
  • de Wit, Heleen A., et al. (författare)
  • Current Browning of Surface Waters Will Be Further Promoted by Wetter Climate
  • 2016
  • Ingår i: ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS. - : American Chemical Society (ACS). - 2328-8930. ; 3:12, s. 430-435
  • Tidskriftsartikel (refereegranskat)abstract
    • Browning of surface waters because of increasing terrestrial dissolved organic carbon (OC) concentrations is a concern for drinking water providers and can impact land carbon storage. We show that positive trends in OC in 474 streams, lakes, and rivers in boreal and subarctic ecosystems in Norway, Sweden, and Finland between 1990 and 2013 are surprisingly constant across climatic gradients and catchment sizes (median, +1.4% year(-1); interquartile range, +0.8-2.0% year(-1)), implying that water bodies across the entire landscape are browning. The largest trends (median, +1.7% year(-1)) were found in regions impacted by strong reductions in sulfur deposition, while subarctic regions showed the least browning (median, +0.8% year(-1)). In dry regions, precipitation was a strong and positive driver of OC concentrations, declining in strength moving toward high rainfall sites. We estimate that a 10% increase in precipitation will increase mobilization of OC from soils to freshwaters by at least 30%, demonstrating the importance of climate wetting for the carbon cycle. We conclude that upon future increases in precipitation, current browning trends will continue across the entire aquatic continuum, requiring expensive adaptations in drinking water plants, increasing land to sea export of carbon, and impacting aquatic productivity and greenhouse gas emissions.
  •  
6.
  • Erlandsson, Martin, et al. (författare)
  • Increasing Dissolved Organic Carbon Redefines the Extent of Surface Water Acidification and Helps Resolve a Classic Controversy
  • 2011
  • Ingår i: BioScience. - : Oxford University Press (OUP). - 0006-3568 .- 1525-3244. ; 61:8, s. 614-618
  • Tidskriftsartikel (refereegranskat)abstract
    • Concentrations of organic acids in freshwaters have increased significantly during recent decades across large parts of Europe and North America. Different theories of the causes (e.g., recovery from acidification, climate change, land use) have different implications for defining the preindustrial levels for dissolved organic carbon (DOC), which are crucial for assessing acidification and other aspects of water quality. We demonstrate this by classifying the acidification status of 66 lakes with long-term observations, representative of about 12,700 acid-sensitive lakes in nemoral and boreal Sweden. Of these lakes, 47% are classified as significantly acidified (Delta pH >= 0.4), assuming preindustrial DOC levels were equal to those observed in 1990. But if instead, the higher DOC levels observed in 2009 define preindustrial conditions, half as many lakes are acidified (24%). This emphasizes the need to establish reference levels for DOC and casts new light on the classic controversy about natural versus anthropogenic acidification.
  •  
7.
  • Erlandsson, Martin, et al. (författare)
  • Natural variability in lake pH on seasonal, interannual and decadal time scales : implications for assessment of human impact
  • 2008
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 42:15, s. 5594-5599
  • Tidskriftsartikel (refereegranskat)abstract
    • Reference values define the natural state with respect to environmental stressors and are commonly used for assessments of ecological impacts and to set restoration targets. These reference values are often treated as constants, whereas in reality they can be highly variable. Here, we study the significance of this variability for assessments of human impact on the environment, by using almost two decades of observations from 95 acid-sensitive Swedish lakes. Our approach was to first estimate the preindustrial, steady-state reference level of acid neutralization capacity (ANC) for each lake with the hydro-geochemical model MAGIC. Then the variability in pH around this "baseline" was reconstructed from the contemporary, "natural" variability in the ANC, total organic carbon (TOC) and Al-concentrations, and partial CO2 pressure. The variability in reference pH was then examined for the period 1990-2004, on seasonal (single measurements), interannual (1-year median), and decadal (5-year median) scales. On the seasonal scale, the variability in reference pH ranged between 0.40 and 1.7. The range on the interannual time scale was up to 1.3 units and for the decadal scale up to 0.76 units. Since an anthropogenic pH decline of more than 0.4 units is deemed significant according to the Swedish Environmental Quality Criteria, this natural variability clearly needs to be accounted for when assessing acidification.
  •  
8.
  • Erlandsson, Martin, et al. (författare)
  • Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate
  • 2008
  • Ingår i: Global Change Biology. - : Blackwell Publishing. - 1354-1013 .- 1365-2486. ; 14:5, s. 1191-1198
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing concentrations of organic matter ( OM) in surface waters have been noted over large parts of the boreal/nemoral zone in Europe and North America. This has raised questions about the causes and the likelihood of further increases. A number of drivers have been proposed, including temperature, hydrology, as well as SO42 - and Cl (-) deposition. The data reported so far, however, have been insufficient to define the relative importance of different drivers in landscapes where they interact. Thirty-five years of monthly measurements of absorbance and chemical oxygen demand ( COD), two common proxies for OM, from 28 large Scandinavian catchments provide an unprecedented opportunity to resolve the importance of hypothesized drivers. For 21 of the catchments, there are 18 years of total organic carbon (TOC) measurements as well. Despite the heterogeneity of the catchments with regards to climate, size and land use, there is a high degree of synchronicity in OM across the entire region. Rivers go from widespread trends of decreasing OM to increasing trends and back again three times in the 35-year record. This synchronicity in decadal scale oscillations and long-term trends suggest a common set of dominant OM drivers in these landscapes. Here, we use regression models to test the importance of different potential drivers. We show that flow and SO42 - together can predict most of the interannual variability in OM proxies, up to 88% for absorbance, up to 78% for COD. Two other candidate drivers, air temperature and Cl (-) , add little explanatory value. Declines in anthropogenic SO42 - since the mid-1970s are thus related to the observed OM increases in Scandinavia, but, in contrast to many recent studies, flow emerges as an even more important driver of OM variability. Stabilizing SO42 - levels also mean that hydrology is likely to be the major driver of future variability and trends in OM.
  •  
9.
  • Kasurinen, Ville, et al. (författare)
  • Modeling nonlinear responses of DOC transport in boreal catchments in Sweden
  • 2016
  • Ingår i: Water resources research. - 0043-1397 .- 1944-7973. ; 52:7, s. 4970-4989
  • Tidskriftsartikel (refereegranskat)abstract
    • Stream water dissolved organic carbon (DOC) concentrations display high spatial and temporal variation in boreal catchments. Understanding and predicting these patterns is a challenge with great implications for water quality projections and carbon balance estimates. Although several biogeochemical models have been used to estimate stream water DOC dynamics, model biases common during both rain and snow melt-driven events. The parsimonious DOC-model, K-DOC, with 10 calibrated parameters, uses a nonlinear discharge and catchment water storage relationship including soil temperature dependencies of DOC release and consumption. K-DOC was used to estimate the stream water DOC concentrations over 5 years for eighteen nested boreal catchments having total area of 68 km2 (varying from 0.04 to 67.9 km2). The model successfully simulated DOC concentrations during base flow conditions, as well as, hydrological events in catchments dominated by organic and mineral soils reaching NSEs from 0.46 to 0.76. Our semimechanistic model was parsimonious enough to have all parameters estimated using statistical methods. We did not find any clear differences between forest and mire-dominated catchments that could be explained by soil type or tree species composition. However, parameters controlling slow release and consumption of DOC from soil water behaved differently for small headwater catchments (less than 2 km2) than for those that integrate larger areas of different ecosystem types (10–68 km2). Our results emphasize that it is important to account for nonlinear dependencies of both, soil temperature, and catchment water storage, when simulating DOC dynamics of boreal catchments.
  •  
10.
  • Nydahl, Anna C., et al. (författare)
  • Groundwater carbon within a boreal catchment : spatiotemporal variability of a hidden aquatic carbon pool
  • 2020
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953 .- 2169-8961. ; 125:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Groundwater is an essential resource providing water for societies and sustaining surface waters. Although groundwater at intermediate depth could be highly influential at regulating lake and river surface water chemistry, studies quantifying organic and inorganic carbon (C) species in intermediate depth groundwater are still rare. Here, we quantified dissolved and gaseous C species in the groundwater of a boreal catchment at 3- to 20-m depth. We found that the partial pressure of carbon dioxide (pCO(2)), the stable carbon isotopic composition of dissolved inorganic carbon (delta C-13-DIC), and pH showed a dependency with depth. Along the depth profile, a negative relationship was observed between pCO(2) and delta C-13-DIC and between pCO(2) and pH. We attribute the negative pCO(2)-pH relationship along the depth gradient to increased silicate weathering and decreased soil respiration. Silicate weathering consumes carbon dioxide (CO2) and release base cations, leading to increased pH and decreased pCO(2). We observed a positive relationship between delta C-13-DIC and depth, potentially due to diffusion-related fractionation in addition to isotopic discrimination during soil respiration. Soil CO2 may diffuse downward, resulting in a fractionation of the delta C-13-DIC. Additionally, the dissolved organic carbon at greater depth may be recalcitrant consisting of old degraded material with a greater fraction of the heavier C isotope. Our study provides increased knowledge about the C biogeochemistry of groundwater at intermediate depth, which is important since these waters likely contribute to the widespread CO2 oversaturation in boreal surface waters.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
Typ av publikation
tidskriftsartikel (11)
Typ av innehåll
refereegranskat (11)
Författare/redaktör
Weyhenmeyer, Gesa A. (11)
Bishop, Kevin (4)
Rusak, James A. (3)
Lundgren, Maria (3)
Erlandsson, Martin (3)
visa fler...
Hylander, Samuel (3)
Langenheder, Silke (3)
Arnott, Shelley E. (3)
Symons, Celia C. (3)
Melles, Stephanie J. (3)
Beisner, Beatrix E. (3)
Canedo-Arguelles, Mi ... (3)
Hebert, Marie-Pier (3)
Brentrup, Jennifer A ... (3)
Lind, Lovisa (3)
Gray, Derek K. (3)
Hintz, William D. (3)
McClymont, Alexandra (3)
Relyea, Rick A. (3)
Searle, Catherine L. (3)
Astorg, Louis (3)
Baker, Henry K. (3)
Ersoy, Zeynep (3)
Espinosa, Carmen (3)
Giorgio, Angelina T. (3)
Hassal, Emily (3)
Huynh, Mercedes (3)
Jonasen, Kacie L. (3)
Langvall, Ola (3)
Proia, Lorenzo (3)
Futter, Martyn (2)
Fugere, Vincent (2)
Greco, Danielle (2)
Franceschini, Jaclyn ... (2)
Gobeler, Norman (2)
Kirkwood, Andrea (2)
Campeau, Audrey (1)
Wallin, Marcus, 1979 ... (1)
Buffam, Ishi (1)
Kortelainen, Pirkko (1)
Hessen, Dag O. (1)
Bastviken, David (1)
Löfgren, Stefan (1)
Köhler, Stephan (1)
Sobek, Sebastian (1)
Räike, Antti (1)
Teutschbein, Claudia ... (1)
Grabs, Thomas J., 19 ... (1)
Moffett, Emma R. (1)
visa färre...
Lärosäte
Uppsala universitet (11)
Sveriges Lantbruksuniversitet (9)
Lunds universitet (4)
Umeå universitet (3)
Linnéuniversitetet (3)
Karlstads universitet (3)
visa fler...
Linköpings universitet (1)
visa färre...
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (10)
Lantbruksvetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy