SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Weyhenmeyer Gesa A.) ;srt2:(2020-2022);conttype:(scientificother)"

Sökning: WFRF:(Weyhenmeyer Gesa A.) > (2020-2022) > Övrigt vetenskapligt/konstnärligt

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Engel, Fabian (författare)
  • The role of freshwater phytoplankton in the global carbon cycle
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Water flowing through the landscape transports chemical substances including carbon. Along the way from upland soils to the ocean, carbon is transformed from organic carbon into inorganic carbon and vice versa. One such carbon transformation process is the uptake of carbon dioxide (CO2) from the water phase by phytoplankton. For some inland waters, it has been shown that phytoplankton can significantly reduce the amount of CO2 (measured as partial pressure of CO2, pCO2) in the water phase. However, the importance of this process for carbon budgets on a regional and global scale is not yet known.The aim of this thesis was to investigate the importance of CO2 uptake by phytoplankton for CO2 dynamics in lakes and rivers on a regional and global scale, and to explain its spatial variation. Conceptual models and the analysis of monitoring data together with statistical modeling and meta-analyses were used.Combining a conceptual lake model for carbon transformation with a mass balance approach showed that gross primary production in lakes is an important flux in the global dissolved inorganic carbon budget of inland waters. In a next step, a simple proxy to assess the phytoplankton influence on the pCO2 in individual lakes and rivers was tested and applied on a regional and global scale. The analysis showed that a significant pCO2 reduction by phytoplankton could be expected in about 20% to 40% of lakes in the temperate and sub-/tropical region. In 9% of the Swedish lakes analyzed, the proxy indicated a significant pCO2 reduction by phytoplankton during summer. The pCO2 can also be significantly reduced by phytoplankton in rivers, and such a reduction might occur in about 20% of the temperate rivers on Earth. In a temperate river that was studied in more detail, consecutive impoundments were found to stimulate phytoplankton production, which might be one explanation for a greater phytoplankton influence on the pCO2 in such systems.Taken together, these results suggest that CO2 uptake by phytoplankton is a significant flux in the global CO2 budget of inland waters. The importance of CO2 uptake by phytoplankton for CO2 dynamics in individual lakes and rivers was predictable by easily available water physico-chemical and biological variables and varied widely in relation to environmental conditions.
  •  
2.
  • Münzner, Karla, 1989- (författare)
  • Causes and consequences of Gonyostomum semen blooms
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Aquatic ecosystems provide essential ecosystem services, but are also highly vulnerable to global change. Climate change, eutrophication and browning, for example, collectively drive the increase of harmful algal blooms in freshwaters. While cyanobacterial blooms have been intensively studied, blooms caused by other algal species have received far less attention.The aim of my thesis was to increase our understanding of the causes and consequences of the freshwater raphidophyte Gonyostomum semen (Ehrenberg) Diesing, which forms high biomass blooms in lakes all over the world. I used laboratory experiments, field studies and lake monitoring data to investigate how G. semen growth is affected by environmental factors related to water color, and how G. semen blooms affect carbon cycling in lakes.High iron concentration (>200 µg L-1) was found to be a requirement for G. semen growth, but not for bloom formation. Rather, increase in dissolved organic carbon (DOC) concentration may drive bloom formation, possibly by a combination of providing additional nutrients to lakes as DOC is imported from terrestrial sources, and by reducing light availability for other competing phytoplankton species. Gonyostomum semen can possibly avoid light limitation and form blooms over a wide range of DOC concentration (8 – 20 mg L-1) due to its diel vertical migration and special pigment composition, although there likely exists a DOC threshold at which also G. semen growth becomes light limited.By fixing CO2 through photosynthesis, G. semen did considerably reduce the partial pressure of CO2 (pCO2) in the studied lakes. Furthermore, the relationship between pCO2 and G. semen became stronger with decreasing DOC concentration, suggesting that reduction in pCO2 caused by G. semen is highest in moderately colored lakes (8 – 12 mg DOC L-1). This resulted in temporary reduction in CO2 emission to the atmosphere during summer, though it is unlikely that it changes annual carbon emissions. Organic matter (OM) generated by G. semen was transported to the sediments, though this did not appear to affect carbon burial rates. However, G. semen increased the fraction of autochthonous OM that sank to the sediment, which may result in altered CO2 and methane (CH4) production on a short-term basis.In summary, G. semen growth is dependent on sufficient iron concentrations, while bloom formation is likely controlled by DOC. Blooms temporarily affect in-lake carbon dynamics through increased rates of CO2 fixation via photosynthesis, transport of autochthonous OM to the sediment and subsequent changes in CO2 and CH4 production. Thus, G. semen may contribute to changes in ecosystem functioning in lakes experiencing browning.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy