SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wieland Thomas) ;srt2:(2020-2022);hsvcat:1"

Sökning: WFRF:(Wieland Thomas) > (2020-2022) > Naturvetenskap

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Paulraj, Thomas, et al. (författare)
  • Primary cell wall inspired micro containers as a step towards a synthetic plant cell
  • 2020
  • Ingår i: Nature Communications. - : Nature Research. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The structural integrity of living plant cells heavily relies on the plant cell wall containing a nanofibrous cellulose skeleton. Hence, if synthetic plant cells consist of such a cell wall, they would allow for manipulation into more complex synthetic plant structures. Herein, we have overcome the fundamental difficulties associated with assembling lipid vesicles with cellulosic nanofibers (CNFs). We prepare plantosomes with an outer shell of CNF and pectin, and beneath this, a thin layer of lipids (oleic acid and phospholipids) that surrounds a water core. By exploiting the phase behavior of the lipids, regulated by pH and Mg2+ ions, we form vesicle-crowded interiors that change the outer dimension of the plantosomes, mimicking the expansion in real plant cells during, e.g., growth. The internal pressure enables growth of lipid tubules through the plantosome cell wall, which paves the way to the development of hierarchical plant structures and advanced synthetic plant cell mimics. © 2020, The Author(s).
  •  
2.
  • Zander, Thomas, et al. (författare)
  • Influence of the Molecular Weight and the Presence of Calcium Ions on the Molecular Interaction of Hyaluronan and DPPC
  • 2020
  • Ingår i: Molecules. - : NLM (Medline). - 1431-5157 .- 1420-3049. ; 25:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Hyaluronan is an essential physiological bio macromolecule with different functions. One prominent area is the synovial fluid which exhibits remarkable lubrication properties. However, the synovial fluid is a multi-component system where different macromolecules interact in a synergetic fashion. Within this study we focus on the interaction of hyaluronan and phospholipids, which are thought to play a key role for lubrication. We investigate how the interactions and the association structures formed by hyaluronan (HA) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) are influenced by the molecular weight of the bio polymer and the ionic composition of the solution. We combine techniques allowing us to investigate the phase behavior of lipids (differential scanning calorimetry, zeta potential and electrophoretic mobility) with structural investigation (dynamic light scattering, small angle scattering) and theoretical simulations (molecular dynamics). The interaction of hyaluronan and phospholipids depends on the molecular weight, where hyaluronan with lower molecular weight has the strongest interaction. Furthermore, the interaction is increased by the presence of calcium ions. Our simulations show that calcium ions are located close to the carboxylate groups of HA and, by this, reduce the number of formed hydrogen bonds between HA and DPPC. The observed change in the DPPC phase behavior can be attributed to a local charge inversion by calcium ions binding to the carboxylate groups as the binding distribution of hyaluronan and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine is not changed.
  •  
3.
  • Heim, Wieland, et al. (författare)
  • Using geolocator tracking data and ringing archives to validate citizen-science based seasonal predictions of bird distribution in a data-poor region
  • 2020
  • Ingår i: Global Ecology and Conservation. - : Elsevier BV. - 2351-9894. ; 24
  • Tidskriftsartikel (refereegranskat)abstract
    • Unstructured citizen-science data are increasingly used for analysing the abundance and distribution of species. Here we test the usefulness of such data to predict the seasonal distribution of migratory songbirds, and to analyse patterns of migratory connectivity. We used bird occurrence data from eBird, one of the largest global citizen science databases, to predict the year-round distribution of eight songbird taxa (Agropsar philippensis, Calliope calliope, Cecropis daurica, Emberiza aureola, Hirundo rustica, Locustella certhiola, Oriolus chinensis, Saxicola torquatus stejnegeri) that migrate through East Asia, a region especially poor in data but globally important for the conservation of migratory land birds. Maximum entropy models were built to predict spring stopover, autumn stopover and wintering areas. Ring recovery and geolocator tracking data were then used to evaluate, how well the predicted occurrence at a given period of the annual cycle matched sites where the species were known to be present from ringing and tracking data. Predicted winter ranges were generally smaller than those on published extent-of-occurrence maps (the hitherto only available source of distribution information). There was little overlap in stopover regions. The overlap between areas predicted as suitable from the eBird data and areas that had records from geolocator tracking was high in winter, and lower for spring and autumn migration. Less than 50% of the ringing recoveries came from locations within the seasonal predicted areas, with the highest overlap in autumn. The seasonal range size of a species affected the matching of tracking/ringing data with the predictions. Strong migratory connectivity was evident in Siberian Rubythroats and Barn Swallows. We identified two migration corridors, one over the eastern mainland of China, and one along a chain of islands in the Pacific. We show that the combination of disparate data sources has great potential to gain a better understanding of the non-breeding distribution and migratory connectivity of Eastern Palearctic songbirds. Citizen-science observation data are useful even in remote areas to predict the seasonal distribution of migratory species, especially in periods when birds are sedentary and when supplemented with tracking data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy