SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wiklund Christer) ;pers:(Backström Niclas 1969)"

Sökning: WFRF:(Wiklund Christer) > Backström Niclas 1969

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boman, Jesper, et al. (författare)
  • Evolution of hybrid inviability associated with chromosome fusions
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Chromosomal rearrangements, such as inversions, have received considerable attention in the speciation literature due to their hampering effects on recombination. However, less is known about how other rearrangements, such as chromosome fissions and fusions, can affect the evolution of reproductive isolation. Here, we used crosses between populations of the wood white butterfly (Leptidea sinapis) with different karyotypes to identify genomic regions associated with hybrid inviability. We mapped candidate loci for hybrid inviability by contrasting allele frequencies between F2 hybrids that survived until the adult stage with individuals of the same cohort that succumbed to hybrid incompatibilities. Hybrid inviability factors were predominantly found in fast-evolving regions with reduced recombination rates, especially in regions where chromosome fusions have occurred. By analyzing sequencing coverage, we excluded aneuploidies as a direct link between hybrid inviability and chromosome fusions. Instead, our results point to an indirect relationship between hybrid inviability and chromosome fusions, possibly related to reductions in recombination rate caused by fusions. These results highlight that the extensive variation in chromosome numbers observed across the tree of life does not only distinguish species but can also be involved in speciation by being hotspots for the early evolution of postzygotic reproductive isolation.
  •  
2.
  • Boman, Jesper, et al. (författare)
  • Meiotic drive against chromosome fusions in butterfly hybrids
  • 2024
  • Ingår i: Chromosome Research. - : Springer. - 0967-3849 .- 1573-6849. ; 32:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Species frequently differ in the number and structure of chromosomes they harbor, but individuals that are heterozygous for chromosomal rearrangements may suffer from reduced fitness. Chromosomal rearrangements like fissions and fusions can hence serve as a mechanism for speciation between incipient lineages, but their evolution poses a paradox. How can rearrangements get fixed between populations if heterozygotes have reduced fitness? One solution is that this process predominantly occurs in small and isolated populations, where genetic drift can override natural selection. However, fixation is also more likely if a novel rearrangement is favored by a transmission bias, such as meiotic drive. Here, we investigate chromosomal transmission distortion in hybrids between two wood white (Leptidea sinapis) butterfly populations with extensive karyotype differences. Using data from two different crossing experiments, we uncover that there is a transmission bias favoring the ancestral chromosomal state for derived fusions, a result that shows that chromosome fusions actually can fix in populations despite being counteracted by meiotic drive. This means that meiotic drive not only can promote runaway chromosome number evolution and speciation, but also that it can be a conservative force acting against karyotypic change and the evolution of reproductive isolation. Based on our results, we suggest a mechanistic model for why chromosome fusion mutations may be opposed by meiotic drive and discuss factors contributing to karyotype evolution in Lepidoptera.
  •  
3.
  • Höök, Lars, et al. (författare)
  • Dualistic dosage compensation and rapid evolution of expression balance in response to W chromosome degeneration in Leptidea butterflies
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The evolution of dimorphic sex chromosomes from initially homologous autosomes is generally explained by sex-specific selection to maintain linkage between a sex determining locus and genes that are beneficial to the same sex. While initially beneficial, the strong linkage and reduced recombination causes differentiation and degeneration of many initially shared genes. Reduced copy numbers can have severe consequences for the balance of gene expression levels between sex-linked genes and the rest of the genome. Consequently, dosage compensation has evolved independently in different lineages to mitigate the detrimental effects of unbalanced expression of sex-linked genes in the heterogametic sex. However, the variation in sex chromosome regulation in different lineages, puts the need to restore expression to ancestral levels into question. In particular, a general difference has been observed between male- (XY) and female-heterogametic (ZW) systems. In contrast to the X chromosome upregulation in heterogametic males in the XY-systems, the Z chromosomes are rarely upregulated in the heterogametic females in organisms with ZW-systems. Instead, the Z chromosomes are often downregulated in the homogametic males to achieve inter-sexual balance. Although progress has been made to understand what causes this discrepancy, comparative approaches are limited by long divergence times and ancient sex chromosome systems. An attractive approach is therefore to study the evolution of gene regulation on recently derived neo-sex chromosomes, formed through fusions between ancestral sex chromosomes and autosomes. Here, we investigated dosage compensation of neo-sex chromosomes in three closely related butterflies in the cryptic wood white clade (Leptidea). Importantly, the species have acquired multiple sex chromosomes, and dosage compensation could therefore have evolved repeatedly in the clade. Our analyses reveal a mixture of gene expression patterns which suggests that distinct modes of dosage compensation have evolved on the different Z chromosomes. In addition, we detect evidence that dosage balancing mechanisms have been rapidly recruited to the youngest neo-Z chromosome, to counteract an ongoing degeneration of neo-W gametologs. The results add to a growing list of examples where diverse dosage compensation mechanisms can evolve within a single species, and suggests that various regulatory mechanisms are not restricted to specific sex chromosome systems.
  •  
4.
  • Höök, Lars, et al. (författare)
  • High-density linkage maps and chromosome level genome assemblies unveil direction and frequency of extensive structural rearrangements in wood white butterflies (Leptidea spp.)
  • Tidskriftsartikel (refereegranskat)abstract
    • Karyotypes are generally conserved between closely related species and large chromosome rearrangements typically have negative fitness consequences in heterozygotes, potentially driving speciation. In the order Lepidoptera, most investigated species have the ancestral karyotype and gene synteny is often conserved across deep divergence, although examples of extensive genome reshuffling have recently been demonstrated. The genus Leptidea has an unusual level of chromosome variation and rearranged sex chromosomes, but the extent of restructuring across the rest of the genome is so far unknown. To explore the genomes of the wood white (Leptidea) species complex, we generated eight genome assemblies using a combination of 10X linked reads and HiC data, and improved them using linkage maps for two populations of the common wood white (L. sinapis) with distinct karyotypes. Synteny analysis revealed an extensive amount of rearrangements, both compared to the ancestral karyotype and between the Leptidea species, where only one of the three Z chromosomes was conserved across all comparisons. Most restructuring was explained by fissions and fusions, while translocations appear relatively rare. We further detected several examples of segregating rearrangement polymorphisms supporting a highly dynamic genome evolution in this clade. Fusion breakpoints were enriched for LINEs and LTR elements, which suggests that ectopic recombination might be an important driver in the formation of new chromosomes. Our results show that chromosome count alone may conceal the extent of genome restructuring and we propose that the amount of genome evolution in Lepidoptera might still be underestimated due to lack of taxonomic sampling.
  •  
5.
  • Höök, Lars, et al. (författare)
  • High-density linkage maps and chromosome level genome assemblies unveil direction and frequency of extensive structural rearrangements in wood white butterflies (Leptidea spp.)
  • 2023
  • Ingår i: Chromosome Research. - : Springer Science and Business Media LLC. - 0967-3849 .- 1573-6849. ; 31:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Karyotypes are generally conserved between closely related species and large chromosome rearrangements typically have negative fitness consequences in heterozygotes, potentially driving speciation. In the order Lepidoptera, most investigated species have the ancestral karyotype and gene synteny is often conserved across deep divergence, although examples of extensive genome reshuffling have recently been demonstrated. The genus Leptidea has an unusual level of chromosome variation and rearranged sex chromosomes, but the extent of restructuring across the rest of the genome is so far unknown. To explore the genomes of the wood white (Leptidea) species complex, we generated eight genome assemblies using a combination of 10X linked reads and HiC data, and improved them using linkage maps for two populations of the common wood white (L. sinapis) with distinct karyotypes. Synteny analysis revealed an extensive amount of rearrangements, both compared to the ancestral karyotype and between the Leptidea species, where only one of the three Z chromosomes was conserved across all comparisons. Most restructuring was explained by fissions and fusions, while translocations appear relatively rare. We further detected several examples of segregating rearrangement polymorphisms supporting a highly dynamic genome evolution in this clade. Fusion breakpoints were enriched for LINEs and LTR elements, which suggests that ectopic recombination might be an important driver in the formation of new chromosomes. Our results show that chromosome count alone may conceal the extent of genome restructuring and we propose that the amount of genome evolution in Lepidoptera might still be underestimated due to lack of taxonomic sampling. 
  •  
6.
  • Leal, Luis, et al. (författare)
  • Gene expression profiling across ontogenetic stages in the wood white (Leptidea sinapis) reveals pathways linked to butterfly diapause regulation
  • 2018
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 27:4, s. 935-948
  • Tidskriftsartikel (refereegranskat)abstract
    • In temperate latitudes, many insects enter diapause (dormancy) during the cold season, a period during which developmental processes come to a standstill. The wood white (Leptidea sinapis) is a butterfly species distributed across western Eurasia that shows photoperiod-induced diapause with variation in critical day-length across populations at different latitudes. We assembled transcriptomes and estimated gene expression levels at different developmental stages in experimentally induced directly developing and diapausing cohorts of a single Swedish population of L. sinapis to investigate the regulatory mechanisms underpinning diapause initiation. Different day lengths resulted in expression changes of developmental genes and affected the rate of accumulation of signal molecules, suggesting that diapause induction might be controlled by increased activity of monoamine neurotransmitters in larvae reared under short-day light conditions. Expression differences between light treatment groups of two monoamine regulator genes (DDC and ST) were observed already in instar III larvae. Once developmental pathways were irreversibly set at instar V, a handful of genes related to dopamine production were differentially expressed leading to a significant decrease in expression of global metabolic genes and increase in expression of genes related to fatty acid synthesis and sequestration. This is in line with a time-dependent (hour-glass) model of diapause regulation where a gradual shift in the concentration of monoamine neurotransmitters and their metabolites during development of larvae under short-day conditions leads to increased storage of fat, decreased energy expenditures, and ultimately developmental stasis at the pupal stage.
  •  
7.
  • Näsvall, Karin, et al. (författare)
  • Activity profiles of regulatory elements and associations with the oogenesis-flight syndrome in a long-distance butterfly migrant.
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The oogenesis-flight syndrome reflects the temporal allocation of energy resources between dispersal / migration and reproduction and is a key concept in research on migratory behaviour in animals. Here, we used an experimental set-up to assess how variation in host plant abundance affected the activity of regulatory elements in the painted lady butterfly (Vanessa cardui), a model species for insect migratory behaviour studies. The results indicate that recently eclosed females that had access to host plants invested in reproduction at an earlier stage and that variation in host plant abundance triggered significant differences in regulatory element activity via acetylation. By analysing functions of genes in the vicinity of significant differences in regulatory activity we pinpointed a set of categories that can be relevant for how females perceive the environment and allocate resources for either migration or reproduction. The functions of genes in the vicinity of differentially activated regions were associated with metabolism, egg shell formation, female receptivity, muscle activity, pheromone binding and mini-chromosome maintenance. Our results provide a first glimpse into the regulatory underpinnings of the oogenesis-flight syndrome and a starting point for more detailed understanding of the links between environmental variation, gene regulation and migratory behaviour in butterflies.
  •  
8.
  • Näsvall, Karin, et al. (författare)
  • Host plant diet affects growth and induces altered gene expression and microbiome composition in the wood white (Leptidea sinapis) butterfly
  • 2021
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 30:2, s. 499-516
  • Tidskriftsartikel (refereegranskat)abstract
    • In a time with decreasing biodiversity, especially among insects, a detailed understanding about specific resource utilization strategies is crucial. The physiological and behavioural responses to host switches in phytophagous insects are poorly understood. Earlier studies indicate that a host plant switch might be associated with distinctive molecular and physiological responses in different lineages. Expanding the assessment of such associations across Lepidoptera will reveal if there are general patterns in adaptive responses, or if each switch event is more of a unique character. We investigated host plant preference, fitness consequences, effects on expression profiles and gut microbiome composition in two common wood white (Leptidea sinapis) populations with different host plant preferences from the extremes of the species distribution area (Sweden and Catalonia). Our results show that female Catalonian wood whites lack preference for either host plant (Lotus corniculatus or L. dorycnium), while Swedish females laid significantly more eggs on L. corniculatus. Individuals from both populations reared on L. dorycnium had longer developmental times and smaller body size as adults. This indicates that both environmental and genetic factors determine the choice to use a specific host plant. Gene expression analysis revealed a more pronounced response to host plant in the Catalonian compared to the Swedish population. In addition, host plant treatment resulted in a significant shift in microbiome community structure in the Catalonian population. Together, this suggests that population specific plasticity associated with local conditions underlies host plant utilisation in wood whites.
  •  
9.
  • Näsvall, Karin, et al. (författare)
  • Nascent evolution of recombination rate as a consequence of chromosomal rearrangements.
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Reshuffling of genetic variation occurs both by independent assortment of chromosomes and by homologous recombination. Such reshuffling can generate novel allele combinations and break linkage between advantageous and deleterious variants which increases both the potential and the efficacy of natural selection. Here we used high-density linkage maps to characterize global and regional recombination rate variation in two populations of the wood white butterfly (Leptidea sinapis) with distinct karyotypes. The recombination data were combined with estimates of genetic diversity and measures of selection to assess associations between chromosomal rearrangements, crossing over, maintenance of genetic diversity and adaptation. Our data show that the recombination rate is influenced by both chromosome size and karyotype, but that the difference in recombination rate between karyotypes is reduced as a consequence of a higher frequency of double crossovers in larger chromosomes. As expected from effects of selection on linked sites, we observed an overall positive association between recombination rate and genetic diversity in both populations. Our results also revealed a significant effect of chromosomal rearrangements on the rate of intergenic diversity change between populations, but limited effects on polymorphisms in coding sequence. We conclude that chromosomal rearrangements can have considerable effects on the recombination landscape and consequently influence both maintenance of genetic diversity and efficiency of selection in natural populations.
  •  
10.
  • Näsvall, Karin, et al. (författare)
  • Nascent evolution of recombination rate differences as a consequence of chromosomal rearrangements
  • 2023
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 19:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Reshuffling of genetic variation occurs both by independent assortment of chromosomes and by homologous recombination. Such reshuffling can generate novel allele combinations and break linkage between advantageous and deleterious variants which increases both the potential and the efficacy of natural selection. Here we used high-density linkage maps to characterize global and regional recombination rate variation in two populations of the wood white butterfly (Leptidea sinapis) that differ considerably in their karyotype as a consequence of at least 27 chromosome fissions and fusions. The recombination data were compared to estimates of genetic diversity and measures of selection to assess the relationship between chromosomal rearrangements, crossing over, maintenance of genetic diversity and adaptation. Our data show that the recombination rate is influenced by both chromosome size and number, but that the difference in the number of crossovers between karyotypes is reduced as a consequence of a higher frequency of double crossovers in larger chromosomes. As expected from effects of selection on linked sites, we observed an overall positive association between recombination rate and genetic diversity in both populations. Our results also revealed a significant effect of chromosomal rearrangements on the rate of intergenic diversity change between populations, but limited effects on polymorphisms in coding sequence. We conclude that chromosomal rearrangements can have considerable effects on the recombination landscape and consequently influence both maintenance of genetic diversity and efficiency of selection in natural populations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy