SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wiklund Christer) ;pers:(Berger David)"

Sökning: WFRF:(Wiklund Christer) > Berger David

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berger, David, et al. (författare)
  • Ecological Constraints on Female Fitness in a Phytophagous Insect
  • 2012
  • Ingår i: American Naturalist. - : University of Chicago Press. - 0003-0147 .- 1537-5323. ; 180:4, s. 464-480
  • Tidskriftsartikel (refereegranskat)abstract
    • Although understanding female reproduction is crucial for population demography, determining how and to what relative extent it is constrained by different ecological factors is complicated by difficulties in studying the links between individual behavior, life history, and fitness in nature. We present data on females in a natural population of the butterfly Leptidea sinapis. These data were combined with climate records and laboratory estimates of life-history parameters to predict the relative impact of different ecological constraints on female fitness in the wild. Using simulation models, we partitioned effects of male courtship, host plant availability, and temperature on female fitness. Results of these models indicate that temperature is the most constraining factor on female fitness, followed by host plant availability; the short-term negative effects of male courtship that were detected in the field study were less important in models predicting female reproductive success over the entire life span. In the simulations, females with more reproductive reserves were more limited by the ecological variables. Reproductive physiology and egg-laying behavior were therefore predicted to be co-optimized but reach different optima for females of different body sizes; this prediction is supported by the empirical data. This study thus highlights the need for studying behavioral and life-history variation in orchestration to achieve a more complete picture of both demographic and evolutionary processes in naturally variable and unpredictable environments.
  •  
2.
  • Berger, David, et al. (författare)
  • Intraspecific variation in body size and the rate of reproduction in female insects- adaptive allometry or biophysical constraint?
  • 2012
  • Ingår i: Journal of Animal Ecology. - : Wiley. - 0021-8790 .- 1365-2656. ; 81:6, s. 1244-1258
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. A high rate of reproduction may be costly if ecological factors limit immediate reproductive output as a fast metabolism compromises own future survival. Individuals with more reserves need more time and opportunity to realize their reproductive potential. Theory therefore predicts that the reproductive rate, defined as the investment in early reproduction in proportion to total potential, should decrease with body size within species. 2. However, metabolic constraints on body size- and temperature-dependent biological rates may impede biophysical adaptation. Furthermore, the sequential manner resources that are allocated to somatic vs. reproductive tissue during ontogeny may, when juveniles develop in unpredictable environments, further contribute to non-adaptive variation in adult reproductive rates. 3. With a model on female egg laying in insects, we demonstrate how variation in body reserves is predicted to affect reproductive rate under different ecological scenarios. Small females always have higher reproductive rates but shorter lifespans. However, incorporation of female host selectivity leads to more similar reproductive rates among female size classes, and oviposition behaviour is predicted to co-evolve with reproductive rate, resulting in small females being more selective in their choice and gaining relatively more from it. 4. We fed simulations with data on the butterfly Pararge aegeria to compare model predictions with reproductive rates of wild butterflies. However, simulated reproductive allometry was a poor predictor of that observed. Instead, reproductive rates were better explained as a product of metabolic constraints on rates of egg maturation, and an empirically derived positive allometry between reproductive potential and size. However, fitness is insensitive to moderate deviations in reproductive rate when oviposition behaviour is allowed to co-evolve in the simulations, suggesting that behavioural compensation may mitigate putative metabolic and developmental constraints. 5. More work is needed to understand how physiology and development together with compensatory behaviours interact in shaping reproductive allometry. Empirical studies should evaluate adaptive hypotheses against proper null hypotheses, including prediction from metabolic theory, preferentially by studying reproductive physiology in combination with behaviour. Conversely, inferences of constraint explanations on reproductive rates must take into consideration that adaptive scenarios may predict similar allometric exponents.
  •  
3.
  • Bergman, Martin, et al. (författare)
  • Mating success of resident versus non-resident males in a territorial butterfly
  • 2007
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 274:1618, s. 1659-1665
  • Tidskriftsartikel (refereegranskat)abstract
    • Male–male competition over territorial ownership suggests that winning is associated with considerable benefits. In the speckled wood butterfly, Pararge aegeria, males fight over sunspot territories on the forest floor; winners gain sole residency of a sunspot, whereas losers patrol the forest in search of females. It is currently not known whether residents experience greater mating success than nonresidents, or whether mating success is contingent on environmental conditions. Here we performed an experiment in which virgin females of P. aegeria were allowed to choose between a resident and a nonresident male in a large enclosure containing one territorial sunspot. Resident males achieved approximately twice as many matings as non-residents, primarily because matings were most often preceded by a female being discovered when flying through a sunspot. There was no evidence that territorial residents were more attractive per se, with females seen to reject them as often as nonresidents. Furthermore, in the cases where females were discovered outside of the sunspot, they were just as likely to mate with non-residents as residents. We hypothesize that the proximate advantage of territory ownership is that light conditions in a large sunspot greatly increase the male’s ability to detect and intercept passing receptive females.
  •  
4.
  • Friberg, Magne, et al. (författare)
  • Habitat choice precedes host plant choice - niche separation in a species pair of a generalist and a specialist butterfly
  • 2008
  • Ingår i: Oikos. - Lund : Department of Ecology, Lund university. ; 117:9, s. 1337-1344
  • Tidskriftsartikel (refereegranskat)abstract
    • The sister species Leptidea reali and L. sinapis have partitioned their niches differently in different parts of their sympatric distribution. In Spain and France L. sinapis is a widespread generalist whereas L. reali is specialized on high altitude open areas. Interestingly, the reverse is true in Ireland and the Czech Republic where L. reali is widespread and L. sinapis specialized on meadows. In Sweden, L. reali is a habitat specialist confined to meadows, whereas L. sinapis is a habitat generalist also inhabiting forests. Ultimately, the geographic mosaic of niche separation is the result of local processes in each contact zone or a secondary effect of the host plant distribution, if L. sinapis and L. reali prefer different legume host plants. Hence, in Sweden L. sinapis might utilize the forest habitat either due to a wider habitat preference or due to a wider host plant preference than L. reali. Studies of wild butterflies showed that L. sinapis laid 26% of their eggs on forest-associated legumes compared to 6% in L. reali, although laboratory experiments showed that both species had virtually identical host plant preferences strongly preferring the meadow-associated legume Lathyrus pratensis. Furthermore, flight duration tests in a variety of temperatures demonstrated a between-species difference; L. sinapis females reached their flight optimum at a lower temperature than L. reali females. The lower L. sinapis flight temperature optimum is most probably a secondary effect due to habitat-specific selection, and therefore a consequence rather than the cause of the habitat partitioning. The finding that habitat choice precedes host plant choice suggests that the European geographic mosaic of niche separation, with L. sinapis and L. reali shifting habitat specialist/generalist roles, is not caused by rigid between-species differences in a related niche parameter, but instead is a result of local processes within each secondary contact zone.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy