SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wilson Harriet L.) ;hsvcat:1"

Sökning: WFRF:(Wilson Harriet L.) > Naturvetenskap

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Stockwell, Jason D., et al. (författare)
  • Storm impacts on phytoplankton community dynamics in lakes
  • 2020
  • Ingår i: Global Change Biology. - : WILEY. - 1354-1013 .- 1365-2486. ; 26:5, s. 2756-2784
  • Forskningsöversikt (refereegranskat)abstract
    • In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short-term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well-developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short- and long-term. We summarize the current understanding of storm-induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.
  •  
2.
  • Wilson, Harriet L., et al. (författare)
  • Variability in epilimnion depth estimations in lakes
  • 2020
  • Ingår i: Hydrology and Earth System Sciences. - : Copernicus GmbH. - 1027-5606 .- 1607-7938. ; 24:11, s. 5559-5577
  • Tidskriftsartikel (refereegranskat)abstract
    • The epilimnion is the surface layer of a lake typically characterised as well mixed and is decoupled from the metalimnion due to a steep change in density. The concept of the epilimnion (and, more widely, the three-layered structure of a stratified lake) is fundamental in limnology, and calculating the depth of the epilimnion is essential to understanding many physical and ecological lake processes. Despite the ubiquity of the term, however, there is no objective or generic approach for defining the epilimnion, and a diverse number of approaches prevail in the literature. Given the increasing availability of water temperature and density profile data from lakes with a high spatio-temporal resolution, automated calculations, using such data, are particularly common, and they have vast potential for use with evolving long-term globally measured and modelled datasets. However, multi-site and multi-year studies, including those related to future climate impacts, require robust and automated algorithms for epilimnion depth estimation. In this study, we undertook a comprehensive comparison of commonly used epilimnion depth estimation methods, using a combined 17-year dataset, with over 4700 daily temperature profiles from two European lakes. Overall, we found a very large degree of variability in the estimated epilimnion depth across all methods and thresholds investigated and for both lakes. These differences, manifesting over high-frequency data, led to fundamentally different understandings of the epilimnion depth. In addition, estimations of the epilimnion depth were highly sensitive to small changes in the threshold value, complex thermal water column structures, and vertical data resolution. These results call into question the custom of arbitrary method selection and the potential problems this may cause for studies interested in estimating the ecological processes occurring within the epilimnion, multi-lake comparisons, or long-term time series analysis. We also identified important systematic differences between methods, which demonstrated how and why methods diverged. These results may provide rationale for future studies to select an appropriate epilimnion definition in light of their particular purpose and with awareness of the limitations of individual methods. While there is no prescribed rationale for selecting a particular method, the method which defined the epilimnion depth as the shallowest depth, where the density was 0.1 kg m−3 more than the surface density, may be particularly useful as a generic method.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy