SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wollrab Sabine) "

Sökning: WFRF:(Wollrab Sabine)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Golub, Malgorzata, et al. (författare)
  • A framework for ensemble modelling of climate change impacts on lakes worldwide : the ISIMIP Lake Sector
  • 2022
  • Ingår i: Geoscientific Model Development. - : Copernicus Publications. - 1991-959X .- 1991-9603. ; 15:11, s. 4597-4623
  • Tidskriftsartikel (refereegranskat)abstract
    • Empirical evidence demonstrates that lakes and reservoirs are warming across the globe. Consequently, there is an increased need to project future changes in lake thermal structure and resulting changes in lake biogeochemistry in order to plan for the likely impacts. Previous studies of the impacts of climate change on lakes have often relied on a single model forced with limited scenario-driven projections of future climate for a relatively small number of lakes. As a result, our understanding of the effects of climate change on lakes is fragmentary, based on scattered studies using different data sources and modelling protocols, and mainly focused on individual lakes or lake regions. This has precluded identification of the main impacts of climate change on lakes at global and regional scales and has likely contributed to the lack of lake water quality considerations in policy-relevant documents, such as the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC). Here, we describe a simulation protocol developed by the Lake Sector of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) for simulating climate change impacts on lakes using an ensemble of lake models and climate change scenarios for ISIMIP phases 2 and 3. The protocol prescribes lake simulations driven by climate forcing from gridded observations and different Earth system models under various representative greenhouse gas concentration pathways (RCPs), all consistently bias-corrected on a 0.5 degrees x 0.5 degrees global grid. In ISIMIP phase 2, 11 lake models were forced with these data to project the thermal structure of 62 well-studied lakes where data were available for calibration under historical conditions, and using uncalibrated models for 17 500 lakes defined for all global grid cells containing lakes. In ISIMIP phase 3, this approach was expanded to consider more lakes, more models, and more processes. The ISIMIP Lake Sector is the largest international effort to project future water temperature, thermal structure, and ice phenology of lakes at local and global scales and paves the way for future simulations of the impacts of climate change on water quality and biogeochemistry in lakes.
  •  
2.
  • Wollrab, Sabine, et al. (författare)
  • Bottom-up responses of the lower oceanic food web are sensitive to copepod mortality and feeding behavior
  • 2015
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 60:2, s. 641-656
  • Tidskriftsartikel (refereegranskat)abstract
    • The functional response, describing consumption rate as a function of food abundance, critically links consumer-resource dynamics. Yet, little is known about how its shape affects communities of multiple, dynamically linked species. We theoretically investigated how the functional response of copepods (saturating type 2 vs. sigmoidal type 3, both of which have been observed) mediates bottom-up and top-down influences on the lower oceanic food web as described by five compartments (pentagon web): a shared limiting nutrient, small and large algae, ciliates feeding on small algae, and copepods feeding on ciliates and large algae. We compare system dynamics in response to nutrient enrichment and copepod mortality, the latter being varied first directly and then indirectly through inclusion of planktivores (fish or jellyfish). Regardless of functional response type, when planktivores are absent, equilibrium densities of all members of the even food chain (nutrients-small algae-ciliates-copepods) typically increase with nutrient enrichment whereas large algae decrease. In contrast, and congruent with conventional wisdom, large algae increase with nutrient enrichment when copepods are controlled by planktivores. A type 2 response in copepods strongly destabilizes the pentagon web, whereas stable equilibria are possible when copepods have a type 3 response. High copepod mortality (e.g., caused by increasing planktivore pressure under nutrient enrichment) destabilizes such systems, however. Moreover, because community feedbacks produce a negative correlation between the copepod's alternative prey, type 3 switching behavior is amplified in the pentagon web. This prevents extinctions but can give rise to an alternative state with small algal dominance at high enrichment.
  •  
3.
  • Wollrab, Sabine, et al. (författare)
  • Ontogenetic diet shifts promote predator-mediated coexistence
  • 2013
  • Ingår i: Ecology. - : Ecological Society of America. - 0012-9658 .- 1939-9170. ; 94:12, s. 2886-2897
  • Tidskriftsartikel (refereegranskat)abstract
    • It is widely believed that predation moderates interspecific competition and promotes prey diversity. Still, in models of two prey sharing a resource and a predator, predator-mediated coexistence occurs only over narrow ranges of resource productivity. These models have so far ignored the widespread feature of ontogenetic diet shifts in predators. Here, we theoretically explore the consequences of a diet shift from juvenile to adult predator stages for coexistence of two competing prey. We find that only very minor deviations from perfectly identical diets in juveniles and adults destroy the traditional mechanism of predator-mediated coexistence, which requires an intrinsic trade-off between prey defendedness and competitive ability. Instead, predator population structure can create an emergent competition-predation trade-off between prey, where a bottleneck in one predator stage enhances predation on the superior competitor and relaxes predation on the inferior competitor, irrespective of the latter's intrinsic defendedness. Pronounced diet shifts therefore greatly enlarge the range of prey coexistence along a resource gradient. With diet shifts, however, coexistence usually occurs as one of two alternative states and, once lost, may not be easily restored.
  •  
4.
  • Wollrab, Sabine, et al. (författare)
  • Simple rules describe bottom-up and top-down control in food webs with alternative energy pathways
  • 2012
  • Ingår i: Ecology Letters. - : Wiley-Blackwell. - 1461-023X .- 1461-0248. ; 15:9, s. 935-946
  • Tidskriftsartikel (refereegranskat)abstract
    • Many human influences on the world's ecosystems have their largest direct impacts at either the top or the bottom of the food web. To predict their ecosystem-wide consequences we must understand how these impacts propagate. A long-standing, but so far elusive, problem in this endeavour is how to reduce food web complexity to a mathematically tractable, but empirically relevant system. Simplification to main energy channels linking primary producers to top consumers has been recently advocated. Following this approach, we propose a general framework for the analysis of bottom-up and top-down forcing of ecosystems by reducing food webs to two energy pathways originating from a limiting resource shared by competing guilds of primary producers (e.g. edible vs. defended plants). Exploring dynamical models of such webs we find that their equilibrium responses to nutrient enrichment and top consumer harvesting are determined by only two easily measurable topological properties: the lengths of the component food chains (oddodd, oddeven, or eveneven) and presence vs. absence of a generalist top consumer reconnecting the two pathways (yielding looped vs. branched webs). Many results generalise to other looped or branched web structures and the model can be easily adapted to include a detrital pathway.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy