SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wong Q.) ;lar1:(cth)"

Sökning: WFRF:(Wong Q.) > Chalmers tekniska högskola

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fenstermacher, M.E., et al. (författare)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Tidskriftsartikel (refereegranskat)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Algaba, Juan-Carlos, et al. (författare)
  • Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Forskningsöversikt (refereegranskat)abstract
    • In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
  •  
3.
  • Abgrall, N., et al. (författare)
  • The large enriched germanium experiment for neutrinoless double beta decay (LEGEND)
  • 2017
  • Ingår i: AIP Conference Proceedings. - : Author(s). - 1551-7616 .- 0094-243X. ; 1894
  • Konferensbidrag (refereegranskat)abstract
    • The observation of neutrinoless double-beta decay (0νββ) would show that lepton number is violated, reveal that neu-trinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of ∼0.1 count /(FWHM·t·yr) in the region of the signal. The current generation 76Ge experiments GERDA and the Majorana Demonstrator, utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0νββ signal region of all 0νββ experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76Ge experiment. The collaboration aims to develop a phased 0νββ experimental program with discovery potential at a half-life approaching or at 1028 years, using existing resources as appropriate to expedite physics results.
  •  
4.
  •  
5.
  • Stoica, Petre, et al. (författare)
  • A unified instrumental variable approach to direction finding in colored noise fields
  • 2009
  • Ingår i: The Digital Signal Processing Handbook. - 9781420046045
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Most parametric methods for direction-of-arrival (DOA) estimation require knowledge of the spatial (sensor-to-sensor) color of the background noise. If this information is unavailable, a serious degradation of the quality of the estimates can result, particularly at low signal-to-noise ratio (SNR) [1-3]. A number of methods have been proposed over the recent years to alleviate the sensitivity to the noise color. If a parametric model of the covariance matrix of the noise is available, the parameters of the noise model can be estimated along with those of the interesting signals [4-7]. Such an approach is expected to performwell in situations where the noise can be accurately modeled with relatively few parameters. An alternative approach, which does not require a precise model of the noise, is based on the principle of instrumental variables (IVs). See Söderström and Stoica [8,9] for thorough treatments of IV methods (IVMs) in the context of identification of linear time-invariant dynamical systems. A brief introduction is given in the appendix. Computationally simple IVMs for array signal processing appeared in [10,11]. These methods perform poorly in difficult scenarios involving closely spaced DOAs and correlated signals.
  •  
6.
  •  
7.
  •  
8.
  • Zhang, Q., et al. (författare)
  • Power scaling of massive MIMO systems with arbitrary-rank channel means and imperfect CSI
  • 2013
  • Ingår i: Proceedings - IEEE Global Communications Conference, GLOBECOM. - 2334-0983 .- 2576-6813. - 9781479913534 ; , s. 4157-4162
  • Konferensbidrag (refereegranskat)abstract
    • In this paper, we study the achievable uplink rates of massive multiple-input multiple-output (MIMO) systems using maximal-ratio combining (MRC) and zero-forcing (ZF) receivers, assuming imperfect channel state information (CSI). Unlike all previous studies, the fast fading MIMO channel matrix here is modeled to have an arbitrary-rank deterministic component as well as a Rayleigh-distributed random component. In particular, it is found that with a non-zero Ricean K-factor, the approximations and the exact uplink rates converge to the same constant value if the number of base station antennas, M, grows large, while the transmit power of each user is scaled down proportionally to 1/M. However, if the channel is Rayleigh fading, we can only cut the transmit power of each user proportionally to 1/√M. In addition, we show that with increasing Ricean K-factor, the uplink rates will converge to fixed values for both MRC and ZF receivers. © 2013 IEEE.
  •  
9.
  • Zhang, Q., et al. (författare)
  • Power Scaling of Uplink Massive MIMO Systems With Arbitrary-Rank Channel Means
  • 2014
  • Ingår i: IEEE Journal on Selected Topics in Signal Processing. - 1941-0484 .- 1932-4553. ; 8:5, s. 966-981
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper investigates the uplink achievable rates of massive multiple-input multiple-output (MIMO) antenna systems in Ricean fading channels, using maximal-ratio combining (MRC) and zero-forcing (ZF) receivers, assuming perfect and imperfect channel state information (CSI). In contrast to previous relevant works, the fast fading MIMO channel matrix is assumed to have an arbitrary-rank deterministic component as well as a Rayleigh-distributed random component. We derive tractable expressions for the achievable uplink rate in the large-antenna limit, along with approximating results that hold for any finite number of antennas. Based on these analytical results, we obtain the scaling law that the users' transmit power should satisfy, while maintaining a desirable quality of service. In particular, it is found that regardless of the Ricean K-factor, in the case of perfect CSI, the approximations converge to the same constant value as the exact results, as the number of base station antennas,, grows large, while the transmit power of each user can be scaled down proportionally to. If CSI is estimated with uncertainty, the same result holds true but only when the Ricean K-factor is non-zero. Otherwise, if the channel experiences Rayleigh fading, we can only cut the transmit power of each user proportionally to 1 root M. In addition, we show that with an increasing Ricean K-factor, the uplink rates will converge to fixed values for both MRC and ZF receivers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy