1. |
|
|
2. |
- Niemi, MEK, et al.
(författare)
-
- 2021
-
swepub:Mat__t
|
|
3. |
- Kanai, M, et al.
(författare)
-
- 2023
-
swepub:Mat__t
|
|
4. |
|
|
5. |
- Murari, A., et al.
(författare)
-
A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
- 2024
-
Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
-
Tidskriftsartikel (refereegranskat)abstract
- The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
|
|
6. |
|
|
7. |
|
|
8. |
- Huyghe, Jeroen R., et al.
(författare)
-
Discovery of common and rare genetic risk variants for colorectal cancer
- 2019
-
Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:1, s. 76-
-
Tidskriftsartikel (refereegranskat)abstract
- To further dissect the genetic architecture of colorectal cancer (CRC), we performed whole-genome sequencing of 1,439 cases and 720 controls, imputed discovered sequence variants and Haplotype Reference Consortium panel variants into genome-wide association study data, and tested for association in 34,869 cases and 29,051 controls. Findings were followed up in an additional 23,262 cases and 38,296 controls. We discovered a strongly protective 0.3% frequency variant signal at CHD1. In a combined meta-analysis of 125,478 individuals, we identified 40 new independent signals at P < 5 x 10(-8), bringing the number of known independent signals for CRC to similar to 100. New signals implicate lower-frequency variants, Kruppel-like factors, Hedgehog signaling, Hippo-YAP signaling, long noncoding RNAs and somatic drivers, and support a role for immune function. Heritability analyses suggest that CRC risk is highly polygenic, and larger, more comprehensive studies enabling rare variant analysis will improve understanding of biology underlying this risk and influence personalized screening strategies and drug development.
|
|
9. |
- Zuntini, Alexandre R., et al.
(författare)
-
Phylogenomics and the rise of the angiosperms
- 2024
-
Ingår i: NATURE. - 0028-0836 .- 1476-4687. ; 629, s. 843-850
-
Tidskriftsartikel (refereegranskat)abstract
- Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods(1,2). A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome(3,4). Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins(5-7). However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes(8). This 15-fold increase in genus-level sampling relative to comparable nuclear studies(9) provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.
|
|
10. |
- Huyghe, Jeroen R, et al.
(författare)
-
Genetic architectures of proximal and distal colorectal cancer are partly distinct
- 2021
-
Ingår i: Gut. - : BMJ Publishing Group Ltd. - 0017-5749 .- 1468-3288. ; 70:7, s. 1325-1334
-
Tidskriftsartikel (refereegranskat)abstract
- Objective: An understanding of the etiologic heterogeneity of colorectal cancer (CRC) is critical for improving precision prevention, including individualized screening recommendations and the discovery of novel drug targets and repurposable drug candidates for chemoprevention. Known differences in molecular characteristics and environmental risk factors among tumors arising in different locations of the colorectum suggest partly distinct mechanisms of carcinogenesis. The extent to which the contribution of inherited genetic risk factors for CRC differs by anatomical subsite of the primary tumor has not been examined.Design: To identify new anatomical subsite-specific risk loci, we performed genome-wide association study (GWAS) meta-analyses including data of 48 214 CRC cases and 64 159 controls of European ancestry. We characterised effect heterogeneity at CRC risk loci using multinomial modelling.Results: We identified 13 loci that reached genome-wide significance (p<5×10-8) and that were not reported by previous GWASs for overall CRC risk. Multiple lines of evidence support candidate genes at several of these loci. We detected substantial heterogeneity between anatomical subsites. Just over half (61) of 109 known and new risk variants showed no evidence for heterogeneity. In contrast, 22 variants showed association with distal CRC (including rectal cancer), but no evidence for association or an attenuated association with proximal CRC. For two loci, there was strong evidence for effects confined to proximal colon cancer.Conclusion: Genetic architectures of proximal and distal CRC are partly distinct. Studies of risk factors and mechanisms of carcinogenesis, and precision prevention strategies should take into consideration the anatomical subsite of the tumour.
|
|