SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wu L) ;mspu:(conferencepaper)"

Search: WFRF:(Wu L) > Conference paper

  • Result 1-10 of 136
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Zhang, S. N., et al. (author)
  • The high energy cosmic-radiation detection (HERD) facility onboard China's Space Station
  • 2014
  • In: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819496126
  • Conference paper (peer-reviewed)abstract
    • The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads of the cosmic lighthouse program onboard China's Space Station, which is planned for operation starting around 2020 for about 10 years. The main scientific objectives of HERD are indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs) from five sides except the bottom. CALO is made of about 104 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. The top STK microstrips of seven X-Y layers are sandwiched with tungsten converters to make precise directional measurements of incoming electrons and gamma-rays. In the baseline design, each of the four side SKTs is made of only three layers microstrips. All STKs will also be used for measuring the charge and incoming directions of cosmic rays, as well as identifying back scattered tracks. With this design, HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV, 20% for protons from 100 GeV to 1 PeV; electron/proton separation power better than 10-5; effective geometrical factors of >3 m2sr for electron and diffuse gamma-rays, >2 m2sr for cosmic ray nuclei. R and D is under way for reading out the LYSO signals with optical fiber coupled to image intensified CCD and the prototype of one layer of CALO. 
  •  
2.
  • Zhang, S. -N, et al. (author)
  • Introduction to the high energy cosmic-radiation detection (HERD) facility onboard China's future space station
  • 2017
  • In: Proceedings of Science. - : Sissa Medialab Srl.
  • Conference paper (peer-reviewed)abstract
    • The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads onboard China's Space Station, which is planned for operation starting around 2025 for about 10 years. The main scientific objectives of HERD are searching for signals of dark matter annihilation products, precise cosmic electron (plus positron) spectrum and anisotropy measurements up to 10 TeV, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs) from five sides except the bottom. CALO is made of about 7,500 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. The top STK microstrips of six X-Y layers are sandwiched with tungsten converters to make precise directional measurements of incoming electrons and gamma-rays. In the baseline design, each of the four side STKs is made of only three layers microstrips. All STKs will also be used for measuring the charge and incoming directions of cosmic rays, as well as identifying back scattered tracks. With this design, HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV and 20% for protons from 100 GeV to 1 PeV; electron/proton separation power better than 10-5; effective geometrical factors of >3 m2sr for electron and diffuse gamma-rays, >2 m2sr for cosmic ray nuclei. R&D is under way for reading out the LYSO signals with optical fiber coupled to image intensified IsCMOS and CALO prototype of 250 LYSO crystals. 
  •  
3.
  • Kristan, M., et al. (author)
  • The Eighth Visual Object Tracking VOT2020 Challenge Results
  • 2020
  • In: Computer Vision. - Cham : Springer International Publishing. - 9783030682378 ; , s. 547-601
  • Conference paper (peer-reviewed)abstract
    • The Visual Object Tracking challenge VOT2020 is the eighth annual tracker benchmarking activity organized by the VOT initiative. Results of 58 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The VOT2020 challenge was composed of five sub-challenges focusing on different tracking domains: (i) VOT-ST2020 challenge focused on short-term tracking in RGB, (ii) VOT-RT2020 challenge focused on “real-time” short-term tracking in RGB, (iii) VOT-LT2020 focused on long-term tracking namely coping with target disappearance and reappearance, (iv) VOT-RGBT2020 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2020 challenge focused on long-term tracking in RGB and depth imagery. Only the VOT-ST2020 datasets were refreshed. A significant novelty is introduction of a new VOT short-term tracking evaluation methodology, and introduction of segmentation ground truth in the VOT-ST2020 challenge – bounding boxes will no longer be used in the VOT-ST challenges. A new VOT Python toolkit that implements all these novelites was introduced. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website (http://votchallenge.net ). 
  •  
4.
  • Leisawitz, David, et al. (author)
  • The origins space telescope
  • 2019
  • In: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 11115
  • Conference paper (peer-reviewed)abstract
    • The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid-and far-infrared wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of Herschel, the largest telescope flown in space to date. After a 3 1/2 year study, the Origins Science and Technology Definition Team will recommend to the Decadal Survey a concept for Origins with a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (MISC-T) will measure the spectra of transiting exoplanets in the 2.8-20 μm wavelength range and offer unprecedented sensitivity, enabling definitive biosignature detections. The Far-IR Imager Polarimeter (FIP) will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer (OSS) will cover wavelengths from 25-588 μm, make wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The telescope has a Spitzer-like architecture and requires very few deployments after launch. The cryo-thermal system design leverages JWST technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins' natural backgroundlimited sensitivity.
  •  
5.
  • Leisawitz, David, et al. (author)
  • The Origins Space Telescope: Mission concept overview
  • 2018
  • In: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 10698
  • Conference paper (peer-reviewed)abstract
    • Downloading of the abstract is permitted for personal use only. The Origins Space Telescope (OST) will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did the universe evolve in response to its changing ingredients? How common are life-bearing planets? To accomplish its scientific objectives, OST will operate at mid- and far-infrared wavelengths and offer superlative sensitivity and new spectroscopic capabilities. The OST study team will present a scientifically compelling, executable mission concept to the 2020 Decadal Survey in Astrophysics. To understand the concept solution space, our team studied two alternative mission concepts. We report on the study approach and describe both of these concepts, give the rationale for major design decisions, and briefly describe the mission-enabling technology.
  •  
6.
  • Andres, E., et al. (author)
  • Selected recent results from AMANDA
  • 2001
  • In: ICHEP 2000. Proceedings of the 30th International Conference on High Energy Physics. - : World Scientific. ; , s. 965-968
  • Conference paper (peer-reviewed)abstract
    • We present a selection of results based on data taken in 1997 with the 302-PMT Antarctic Muon and Neutrino Detector Array-B10 ("AMANDA-B10") array. Atmospheric neutrinos created in the northern hemisphere are observed indirectly through their charged current interactions which produce relativistic, Cherenkov-light-emitting upgoing muons in the South Pole ice cap. The reconstructed angular distribution of these events is in good agreement with expectation and demonstrates the viability of this ice-based device as a neutrino telescope. Studies of nearly vertical upgoing muons limit the available parameter space for WIMP dark matter under the assumption that WIMPS are trapped in the earth's gravitational potential well and annihilate with one another near the earth's center.
  •  
7.
  • Feng, Zhenhua, et al. (author)
  • SNR equalized optical direct-detected OFDM transmission with CAZAC equalization
  • 2015
  • In: CLEO. - : Optica Publishing Group.
  • Conference paper (peer-reviewed)abstract
    • 50Km SSMF optical direct-detected OFDM transmission with Constant Amplitude Zero Auto Correlation Sequence (CAZAC) equalization is experimentally demonstrated with over 15dB power budget. 2.5dB enhancement in sensitivity has been achieved simultaneously with 3dB PAPR suppression.
  •  
8.
  • Karle, A., et al. (author)
  • Observation of high energy atmospheric neutrinos with AMANDA
  • 2000
  • In: AIP Conference Proceedings. - : American Institute of Physics (AIP). ; , s. 823-827
  • Conference paper (peer-reviewed)abstract
    • In 1997 the Antarctic Muon and Neutrino Detector Array (AMANDA) started operating with 10 strings. In an analysis of data taken during the first year of operation 188 atmospheric neutrino candidates were found. Their zenith angle distribution agrees with expectations based on Monte Carlo simulations. A preliminary upper limit is given on a diffuse flux of high energy neutrinos of astrophysical origin.
  •  
9.
  •  
10.
  • Mocchiutti, E., et al. (author)
  • PAMELA and electrons
  • 2011
  • Conference paper (peer-reviewed)abstract
    • The 15th of June 2006, the PAMELA satellite-borne experiment was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. The apparatus comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail counter scintillator and a neutron detector. The combination of these devices allows precision studies of the charged cosmic radiation to be conducted over a wide energy range (100 MeV-100's GeV) with high statistics. The measurement of the positron to electron fraction and of the electron energy spectrum in order to search for exotic sources, such as dark matter particle annihilations, are within the PAMELA primary scientific goal.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 136
Type of publication
Type of content
peer-reviewed (86)
other academic/artistic (50)
Author/Editor
Wu, X. (18)
Zhang, L. (17)
Wang, Shu Min, 1963 (17)
Wu, J (12)
Adriani, O. (12)
Bongi, M. (11)
show more...
Bottai, S. (11)
Mori, N. (11)
Papini, P. (11)
Spillantini, P. (11)
Vannuccini, E. (11)
Wu, L. (11)
Casolino, M. (10)
Li, Y. (10)
Vacchi, A. (10)
Bonvicini, V. (10)
Zampa, G. (10)
Bruno, A. (10)
Bellotti, R. (10)
Cafagna, F. (10)
Campana, D. (10)
Marcelli, L. (10)
Osteria, G. (10)
Picozza, P. (10)
Ricci, M. (10)
Castellini, G. (10)
Wu, W. (10)
Bazilevskaya, G. A. (10)
Boezio, M. (10)
Bogomolov, E. A. (10)
Carbone, R. (10)
De Pascale, M. P. (10)
Di Felice, V. (10)
Galper, A. M. (10)
Jerse, G. (10)
Koldashov, S. V. (10)
Krutkov, S. Y. (10)
Kvashnin, A. N. (10)
Menn, W. (10)
Mikhailov, V. V. (10)
Mocchiutti, E. (10)
Ricciarini, S. B. (10)
Simon, M. (10)
Sparvoli, R. (10)
Stozhkov, Y. I. (10)
Voronov, S. A. (10)
Yurkin, Y. T. (10)
Zampa, N. (10)
Zverev, V. G. (10)
Rossetto, Laura (10)
show less...
University
Karolinska Institutet (46)
Royal Institute of Technology (32)
Chalmers University of Technology (23)
Linnaeus University (9)
Luleå University of Technology (7)
Uppsala University (6)
show more...
Linköping University (5)
Lund University (4)
RISE (2)
University of Gothenburg (1)
University of Gävle (1)
Stockholm School of Economics (1)
Högskolan Dalarna (1)
show less...
Language
English (136)
Research subject (UKÄ/SCB)
Natural sciences (51)
Engineering and Technology (35)
Medical and Health Sciences (4)
Social Sciences (1)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view