SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yan Jia) ;lar1:(liu)"

Sökning: WFRF:(Yan Jia) > Linköpings universitet

  • Resultat 1-10 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  •  
4.
  • Kristan, Matej, et al. (författare)
  • The first visual object tracking segmentation VOTS2023 challenge results
  • 2023
  • Ingår i: 2023 IEEE/CVF International conference on computer vision workshops (ICCVW). - : Institute of Electrical and Electronics Engineers Inc.. - 9798350307443 - 9798350307450 ; , s. 1788-1810
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking Segmentation VOTS2023 challenge is the eleventh annual tracker benchmarking activity of the VOT initiative. This challenge is the first to merge short-term and long-term as well as single-target and multiple-target tracking with segmentation masks as the only target location specification. A new dataset was created; the ground truth has been withheld to prevent overfitting. New performance measures and evaluation protocols have been created along with a new toolkit and an evaluation server. Results of the presented 47 trackers indicate that modern tracking frameworks are well-suited to deal with convergence of short-term and long-term tracking and that multiple and single target tracking can be considered a single problem. A leaderboard, with participating trackers details, the source code, the datasets, and the evaluation kit are publicly available at the challenge website1
  •  
5.
  • Chen, Jing-De, et al. (författare)
  • Hot-electron emission-driven energy recycling in transparent plasmonic electrode for organic solar cells
  • 2022
  • Ingår i: InfoMat. - : Wiley. - 2567-3165. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmonic metal electrodes with subwavelength nanostructures are promising for enhancing light harvesting in photovoltaics. However, the nonradiative damping of surface plasmon polaritons (SPPs) during coupling with sunlight results in the conversion of the excited hot-electrons to heat, which limits the absorption of light and generation of photocurrent. Herein, an energy recycling strategy driven by hot-electron emission for recycling the SPP energy trapped in the plasmonic electrodes is proposed. A transparent silver-based plasmonic metal electrode (A-PME) with a periodic hexagonal nanopore array is constructed, which is combined with a luminescent organic emitter for radiative recombination of the injected hot-electrons. Owing to the suppressed SPP energy loss via broadband hot-electron emission, the A-PME achieves an optimized optical transmission with an average transmittance of over 80% from 380 to 1200 nm. Moreover, the indium-tin-oxide-free organic solar cells yield an enhanced light harvesting with a power conversion efficiency of 16.1%.
  •  
6.
  • Dai, Yi, et al. (författare)
  • Zn-doped CaFeO3 perovskite-derived high performed catalyst on oxygen reduction reaction in microbial fuel cells
  • 2021
  • Ingår i: Journal of Power Sources. - : ELSEVIER. - 0378-7753 .- 1873-2755. ; 489
  • Tidskriftsartikel (refereegranskat)abstract
    • Stable perovskite oxide is considered as a potential cathode for microbial fuel cells (MFCs). Herein, Zn is used as an effective element to modify the micro-structure and oxygen vacancy of perovskite to be a novel cathode catalyst. Physical characterizations show that due to partial volatilization at high temperature of Zn, perovskite forms hierarchically porous structures. Moreover, Zn is precipitated in electrochemical reaction to generate Zn vacancy in situ; thus, the active center of Fe has a superior interaction with oxygen-containing species, promoting the production of oxygen vacancy and forms a mixed valence state of Fe2+/Fe3+. The Zn-doped perovskite material CaFe0.7Zn0.3O3 exhibits remarkable oxygen reduction reaction (ORR) performances with outstanding onset potential (0.194 V vs. Ag/AgCl) and half-wave potential (-0.219 V vs. Ag/AgCl) under alkaline condition, which is better than Pt/C catalyst. Besides, CaFe0.7Zn0.3O3 shows an excellent four-electron pathway of ORR mechanism with remarkable corrosion resistance and stability, which enables a more reliable cathode electrocatalyst. The maximum power density of CaFe0.7Zn0.3O3 (892.10 +/- 90.79 mW m(-3)) testing on microbial fuel cell is comparable to the maximum power density (1012.86 +/- 84.03 mW m(-3)) of Pt/C. The findings of this work provide the feasibility of exploring inexpensive and high-performance cathode catalyst.
  •  
7.
  • Jiang, Shuang, et al. (författare)
  • Shear banding-induced ⟨c + a⟩ slip enables unprecedented strength-ductility combination of laminated metallic composites
  • 2022
  • Ingår i: Journal of Materials Science & Technology. - Shenyang, China : Elsevier. - 1005-0302. ; 110, s. 260-268
  • Tidskriftsartikel (refereegranskat)abstract
    • Shear bands in metallic materials have been reported to be catastrophic because they normally lead to non-uniform plastic deformation. Ductility of laminated metallic composites deteriorates with increasing processing strain, particularly for those having hexagonal-close-packed (hcp) constituents due to inadequate slip systems and consequently prominent shear banding. Here, we propose a design strategy that counterintuitively tolerates the bands with localized strains, i.e. the shear banded laminar (SBL) structure, which promotes ⟨c + a⟩ dislocation activation in hcp metals and renders unprecedented strengthductility combination in hcp-metal-based composites fabricated by accumulative roll bonding (ARB). The SBL structure is characterized with one soft hcp metal constrained by adjacent hard metal in which dislocations have been accumulated near the bimetal interfaces. High-energy X-ray diffraction astonishingly reveals that more than 90% of dislocations are non-basal in Ti layers of the SBL Ti/Nb composite processed by eight ARB cycles. Moreover, ⟨c + a⟩ dislocations occupy a high fraction of ∼30%, promoting further ⟨c + a⟩ cross slip. The unique stress field tailored by both shear banding and heterophase interface-mediated deformation accommodation triggers important ⟨c + a⟩ slip. This SBL design is of significance for developing hcp-based laminates and other heterostructured materials with high performances.
  •  
8.
  • Luo, Yifei, et al. (författare)
  • Technology Roadmap for Flexible Sensors
  • 2023
  • Ingår i: ACS Nano. - : American Chemical Society. - 1936-0851 .- 1936-086X. ; 17:6, s. 5211-5295
  • Forskningsöversikt (refereegranskat)abstract
    • Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
  •  
9.
  • Wang, Yan, et al. (författare)
  • Bimetallic hybrids modified with carbon nanotubes as cathode catalysts for microbial fuel cell: Effective oxygen reduction catalysis and inhibition of biofilm formation
  • 2021
  • Ingår i: Journal of Power Sources. - Amsterdam, Netherlands : Elsevier. - 0378-7753 .- 1873-2755. ; 485
  • Tidskriftsartikel (refereegranskat)abstract
    • As a promising energy conversion equipment, the performance of microbial fuel cell (MFC) is affected by slow kinetics of oxygen reduction reaction (ORR). It is of great significance to explore electrocatalysts with high activity for sustainable energy applications. Herein, we synthesize the in-situ grown carbon nanotubes decorated electrocatalyst derived from copper-based metal organic frameworks (MOFs) co-doped with cobalt and nitrogen (CuCo@NCNTs) through straightforward immersion and pyrolysis process. The carbon nanotubes produced by metallic cobalt and high-activity bimetallic active sites formed by nitrogen doping enable CuCo@NCNTs to have the best oxygen reduction reaction (ORR) performance in alkaline electrolyte, with limit current density of 5.88 mA cm-2 and onset potential of 0.91 V (vs. RHE). Moreover, CuCo@NCNTs nanocomposite exhibits obvious antibacterial activity, and inhibiting the biofilm on cathode surface in antibacterial test and biomass quantification. The maximum power density (2757 mW m-3) of MFC modified with CuCo@NCNTs is even higher than Pt/C catalyst (2313 mW m-3). In short, CuCo@NCNTs nanocomposite can be an alternative cathode catalyst for MFC.
  •  
10.
  • You, Henghui, et al. (författare)
  • Novel Strontium/Iron Bimetallic Carbon Composites as Synergistic Catalyst for Oxygen Reduction Reaction in Microbial Fuel Cells
  • 2021
  • Ingår i: Electrocatalysis. - : SPRINGER. - 1868-2529 .- 1868-5994. ; 12:6, s. 759-770
  • Tidskriftsartikel (refereegranskat)abstract
    • It is critical to develop non-noble metal (NNM) electrocatalysts with excellent stability and innovative activity for oxygen reduction reaction (ORR) in the microbial fuel cells (MFCs), which is a promising energy conversion technology. Herein, the preparation of iron carbide electrocatalysts (SrCO3/Fe3C) by the pyrolysis of a bimetal precursor (Sr and Fe) is proposed as a feasible strategy to realize a highly active electrocatalyst for ORR. Based on the catalytic potential of Sr-based materials, Fe species doping can provide more beneficial active sites for ORR. Concisely, the SrCO3/Fe3C(1:12) catalyst achieves the onset potential of 0.197 V (vs. Ag/AgCl) superior than Pt/C catalyst (0.193 V vs. Ag/AgCl) and the half-wave potential of -0.157 V (vs. Ag/AgCl) in 0.1-M KOH solution. Furthermore, the electrocatalyst exhibits nearly four-electron pathway, and generates less than 3% H2O2. Compared with Pt/C catalyst, it possesses preferable stability and superior methanol tolerance. Moreover, a composite electrode with SrCO3/Fe3C(1:12) as a catalyst on the carbon cloth demonstrated a superb air cathode in MFCs with a power density of 398.98 mW m(-2), which can outperform than 10 wt% Pt/C catalysts (342.13 mW m(-2)) on MFCs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 36

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy