SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Yan M) ;hsvcat:2"

Search: WFRF:(Yan M) > Engineering and Technology

  • Result 1-10 of 98
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Fenstermacher, M.E., et al. (author)
  • DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
  • 2022
  • In: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 62:4
  • Journal article (peer-reviewed)abstract
    • DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.
  •  
2.
  • Eatough, Ralph P., et al. (author)
  • Verification of Radiative Transfer Schemes for the EHT
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 897:2
  • Journal article (peer-reviewed)abstract
    • The Event Horizon Telescope (EHT) Collaboration has recently produced the first resolved images of the central supermassive black hole in the giant elliptical galaxy M87. Here we report on tests of the consistency and accuracy of the general relativistic radiative transfer codes used within the collaboration to model M87∗ and Sgr A∗. We compare and evaluate (1) deflection angles for equatorial null geodesics in a Kerr spacetime; (2) images calculated from a series of simple, parameterized matter distributions in the Kerr metric using simplified emissivities and absorptivities; (3) for a subset of codes, images calculated from general relativistic magnetohydrodynamics simulations using different realistic synchrotron emissivities and absorptivities; (4) observables for the 2017 configuration of EHT, including visibility amplitudes and closure phases. The error in total flux is of order 1% when the codes are run with production numerical parameters. The dominant source of discrepancies for small camera distances is the location and detailed setup of the software "camera"that each code uses to produce synthetic images. We find that when numerical parameters are suitably chosen and the camera is sufficiently far away the images converge and that for given transfer coefficients, numerical uncertainties are unlikely to limit parameter estimation for the current generation of EHT observations. The purpose of this paper is to describe a verification and comparison of EHT radiative transfer codes. It is not to verify EHT models more generally.
  •  
3.
  • Akiyama, Kazunori, et al. (author)
  • First M87 Event Horizon Telescope Results. II. Array and Instrumentation
  • 2019
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 875:1
  • Journal article (peer-reviewed)abstract
    • The Event Horizon Telescope (EHT) is a very long baseline interferometry (VLBI) array that comprises millimeter- and submillimeter-wavelength telescopes separated by distances comparable to the diameter of the Earth. At a nominal operating wavelength of ∼1.3 mm, EHT angular resolution (λ/D) is ∼25 μas, which is sufficient to resolve nearby supermassive black hole candidates on spatial and temporal scales that correspond to their event horizons. With this capability, the EHT scientific goals are to probe general relativistic effects in the strong-field regime and to study accretion and relativistic jet formation near the black hole boundary. In this Letter we describe the system design of the EHT, detail the technology and instrumentation that enable observations, and provide measures of its performance. Meeting the EHT science objectives has required several key developments that have facilitated the robust extension of the VLBI technique to EHT observing wavelengths and the production of instrumentation that can be deployed on a heterogeneous array of existing telescopes and facilities. To meet sensitivity requirements, high-bandwidth digital systems were developed that process data at rates of 64 gigabit s -1 , exceeding those of currently operating cm-wavelength VLBI arrays by more than an order of magnitude. Associated improvements include the development of phasing systems at array facilities, new receiver installation at several sites, and the deployment of hydrogen maser frequency standards to ensure coherent data capture across the array. These efforts led to the coordination and execution of the first Global EHT observations in 2017 April, and to event-horizon-scale imaging of the supermassive black hole candidate in M87.
  •  
4.
  • Akiyama, Kazunori, et al. (author)
  • First M87 Event Horizon Telescope Results. VII. Polarization of the Ring
  • 2021
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 910:1
  • Journal article (peer-reviewed)abstract
    • In 2017 April, the Event Horizon Telescope (EHT) observed the near-horizon region around the supermassive black hole at the core of the M87 galaxy. These 1.3 mm wavelength observations revealed a compact asymmetric ring-like source morphology. This structure originates from synchrotron emission produced by relativistic plasma located in the immediate vicinity of the black hole. Here we present the corresponding linear-polarimetric EHT images of the center of M87. We find that only a part of the ring is significantly polarized. The resolved fractional linear polarization has a maximum located in the southwest part of the ring, where it rises to the level of similar to 15%. The polarization position angles are arranged in a nearly azimuthal pattern. We perform quantitative measurements of relevant polarimetric properties of the compact emission and find evidence for the temporal evolution of the polarized source structure over one week of EHT observations. The details of the polarimetric data reduction and calibration methodology are provided. We carry out the data analysis using multiple independent imaging and modeling techniques, each of which is validated against a suite of synthetic data sets. The gross polarimetric structure and its apparent evolution with time are insensitive to the method used to reconstruct the image. These polarimetric images carry information about the structure of the magnetic fields responsible for the synchrotron emission. Their physical interpretation is discussed in an accompanying publication.
  •  
5.
  • Narayan, Ramesh, et al. (author)
  • The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 912:1
  • Journal article (peer-reviewed)abstract
    • Synchrotron radiation from hot gas near a black hole results in a polarized image. The image polarization is determined by effects including the orientation of the magnetic field in the emitting region, relativistic motion of the gas, strong gravitational lensing by the black hole, and parallel transport in the curved spacetime. We explore these effects using a simple model of an axisymmetric, equatorial accretion disk around a Schwarzschild black hole. By using an approximate expression for the null geodesics derived by Beloborodov and conservation of the Walker-Penrose constant, we provide analytic estimates for the image polarization. We test this model using currently favored general relativistic magnetohydrodynamic simulations of M87*, using ring parameters given by the simulations. For a subset of these with modest Faraday effects, we show that the ring model broadly reproduces the polarimetric image morphology. Our model also predicts the polarization evolution for compact flaring regions, such as those observed from Sgr A* with GRAVITY. With suitably chosen parameters, our simple model can reproduce the EVPA pattern and relative polarized intensity in Event Horizon Telescope images of M87*. Under the physically motivated assumption that the magnetic field trails the fluid velocity, this comparison is consistent with the clockwise rotation inferred from total intensity images.
  •  
6.
  • Farah, Joseph, et al. (author)
  • Selective Dynamical Imaging of Interferometric Data
  • 2022
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 930:2
  • Journal article (peer-reviewed)abstract
    • Recent developments in very long baseline interferometry (VLBI) have made it possible for the Event Horizon Telescope (EHT) to resolve the innermost accretion flows of the largest supermassive black holes on the sky. The sparse nature of the EHT's (u, v)-coverage presents a challenge when attempting to resolve highly time-variable sources. We demonstrate that the changing (u, v)-coverage of the EHT can contain regions of time over the course of a single observation that facilitate dynamical imaging. These optimal time regions typically have projected baseline distributions that are approximately angularly isotropic and radially homogeneous. We derive a metric of coverage quality based on baseline isotropy and density that is capable of ranking array configurations by their ability to produce accurate dynamical reconstructions. We compare this metric to existing metrics in the literature and investigate their utility by performing dynamical reconstructions on synthetic data from simulated EHT observations of sources with simple orbital variability. We then use these results to make recommendations for imaging the 2017 EHT Sgr A* data set.
  •  
7.
  • Wielgus, Maciek, et al. (author)
  • Monitoring the Morphology of M87* in 2009-2017 with the Event Horizon Telescope
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 901:1
  • Journal article (peer-reviewed)abstract
    • The Event Horizon Telescope (EHT) has recently delivered the first resolved images of M87*, the supermassive black hole in the center of the M87 galaxy. These images were produced using 230 GHz observations performed in 2017 April. Additional observations are required to investigate the persistence of the primary image feature-a ring with azimuthal brightness asymmetry-and to quantify the image variability on event horizon scales. To address this need, we analyze M87* data collected with prototype EHT arrays in 2009, 2011, 2012, and 2013. While these observations do not contain enough information to produce images, they are sufficient to constrain simple geometric models. We develop a modeling approach based on the framework utilized for the 2017 EHT data analysis and validate our procedures using synthetic data. Applying the same approach to the observational data sets, we find the M87* morphology in 2009-2017 to be consistent with a persistent asymmetric ring of similar to 40 mu as diameter. The position angle of the peak intensity varies in time. In particular, we find a significant difference between the position angle measured in 2013 and 2017. These variations are in broad agreement with predictions of a subset of general relativistic magnetohydrodynamic simulations. We show that quantifying the variability across multiple observational epochs has the potential to constrain the physical properties of the source, such as the accretion state or the black hole spin.
  •  
8.
  • Santana, Felipe A., et al. (author)
  • Final Targeting Strategy for the SDSS-IV APOGEE-2S Survey
  • 2021
  • In: Astronomical Journal. - : American Astronomical Society. - 1538-3881 .- 0004-6256. ; 162:6
  • Journal article (peer-reviewed)abstract
    • APOGEE is a high-resolution (R similar to 22,000), near-infrared, multi-epoch, spectroscopic survey of the Milky Way. The second generation of the APOGEE project, APOGEE-2, includes an expansion of the survey to the Southern Hemisphere called APOGEE-2S. This expansion enabled APOGEE to perform a fully panoramic mapping of all of the main regions of the Milky Way; in particular, by operating in the H band, APOGEE is uniquely able to probe the dust-hidden inner regions of the Milky Way that are best accessed from the Southern Hemisphere. In this paper we present the targeting strategy of APOGEE-2S, with special attention to documenting modifications to the original, previously published plan. The motivation for these changes is explained as well as an assessment of their effectiveness in achieving their intended scientific objective. In anticipation of this being the last paper detailing APOGEE targeting, we present an accounting of all such information complete through the end of the APOGEE-2S project; this includes several main survey programs dedicated to exploration of major stellar populations and regions of the Milky Way, as well as a full list of programs contributing to the APOGEE database through allocations of observing time by the Chilean National Time Allocation Committee and the Carnegie Institution for Science. This work was presented along with a companion article, Beaton et al. (2021), presenting the final target selection strategy adopted for APOGEE-2 in the Northern Hemisphere.
  •  
9.
  • Zetterberg, P., et al. (author)
  • Initial multi-node and antenna transmitter and receiver architectures and schemes; Deliverable D5.1
  • 2016
  • Reports (other academic/artistic)abstract
    • This deliverable provides the initial concepts and solutions from the technical work related to multi-antenna and multi-node transceiver schemes in millimetre wave (denoted as 6-100GHz) spectrum. It also briefly presents the use cases on which the work will be based and categorises the solutions in terms of their applicability to access, backhaul and relay deployments. Another important contribution from this report is the modelling of the hardware impairments in millimetre wave transceivers and the analysis of their impact on system performance.
  •  
10.
  • Naqvi, Muhammad, et al. (author)
  • Polygeneration system integrated with small non-wood pulp mills for substitute natural gas production
  • 2018
  • In: Applied Energy. - : Elsevier. - 0306-2619 .- 1872-9118. ; 224, s. 636-646
  • Journal article (peer-reviewed)abstract
    • This study aims to examine the potential substitute natural gas (SNG) production by integrating black liquor gasification (BLG) island with a small wheat straw-based non-wood pulp mills (NPM), which do not employ the black liquor recovery cycle. For such integration, it is important to first build knowledge on expected improvements in an overall integrated non-wood pulp mill energy system using the key performance indicators. O2-blown circulating fluidized bed (CFB) gasification with direct causticization is integrated with a reference small NPM to evaluate the overall performance. A detailed economic analysis is performed together with a sensitivity analysis based on variations in the rate of return due to varying biomass price, total capital investment, and natural gas prices. The quantitive results showed considerable SNG production but significantly reduced electricity production. There is a substantial CO2 abatement potential combining CO2 capture and CO2 mitigation from SNG use replacing compressed natural gas (CNG) or gasoline. The economic performance through sensitivity analysis reflects significant dependency on both substitute natural gas production and natural gas market price. Furthermore, the solutions to address the challenges and barriers for the successful commercial implementation of BLG based polygeneration system at small NPMs are discussed. The system performance and discussion on the real application of integrated system presented in this article form a vital literature source for future use by large number of small non-wood pulp industries.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 98
Type of publication
journal article (68)
conference paper (24)
research review (2)
book chapter (2)
reports (1)
editorial proceedings (1)
show more...
show less...
Type of content
peer-reviewed (92)
other academic/artistic (6)
Author/Editor
Kim, Jae-Young (6)
Akiyama, Kazunori (6)
Alberdi, Antxon (6)
Alef, Walter (6)
Ball, David (6)
Barrett, John (6)
show more...
Bintley, Dan (6)
Blackburn, Lindy (6)
Brissenden, Roger (6)
Britzen, Silke (6)
Broderick, Avery E. (6)
Bronzwaer, Thomas (6)
Byun, Do Young (6)
Chan, Chi Kwan (6)
Chatterjee, Koushik (6)
Chen, Ming Tang (6)
Chen, Yongjun (6)
Christian, Pierre (6)
Conway, John, 1963 (6)
Cordes, James M. (6)
Cui, Yuzhu (6)
Davelaar, Jordy (6)
Dempsey, Jessica (6)
Desvignes, Gregory (6)
Eatough, Ralph P. (6)
Fromm, Christian M. (6)
Galison, Peter (6)
Gammie, Charles F. (6)
Gentaz, Olivier (6)
Gu, Minfeng (6)
Hecht, Michael H. (6)
Ho, Luis C. (6)
Huang, Chih Wei L. (6)
Huang, Lei (6)
Inoue, Makoto (6)
James, David J. (6)
Jannuzi, Buell T. (6)
Jeter, Britton (6)
Jiang, Wu (6)
Johnson, Michael D. (6)
Jung, Taehyun (6)
Karami, Mansour (6)
Kawashima, Tomohisa (6)
Kim, Junhan (6)
Kim, Jongsoo (6)
Koay, Jun Yi (6)
Koch, Patrick M. (6)
Koyama, Shoko (6)
Kuo, Cheng Yu (6)
Lauer, Tod R. (6)
show less...
University
Royal Institute of Technology (49)
Mälardalen University (37)
Chalmers University of Technology (20)
Lund University (6)
Umeå University (3)
Luleå University of Technology (3)
show more...
Uppsala University (2)
Stockholm University (2)
Halmstad University (1)
Linköping University (1)
Jönköping University (1)
RISE (1)
Karlstad University (1)
Karolinska Institutet (1)
show less...
Language
English (98)
Research subject (UKÄ/SCB)
Natural sciences (29)
Medical and Health Sciences (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view