SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yang J) ;hsvcat:4"

Sökning: WFRF:(Yang J) > Lantbruksvetenskap

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Davies, Stuart J., et al. (författare)
  • ForestGEO: Understanding forest diversity and dynamics through a global observatory network
  • 2021
  • Ingår i: Biological Conservation. - : Elsevier BV. - 0006-3207. ; 253
  • Tidskriftsartikel (refereegranskat)abstract
    • ForestGEO is a network of scientists and long-term forest dynamics plots (FDPs) spanning the Earth's major forest types. ForestGEO's mission is to advance understanding of the diversity and dynamics of forests and to strengthen global capacity for forest science research. ForestGEO is unique among forest plot networks in its large-scale plot dimensions, censusing of all stems ≥1 cm in diameter, inclusion of tropical, temperate and boreal forests, and investigation of additional biotic (e.g., arthropods) and abiotic (e.g., soils) drivers, which together provide a holistic view of forest functioning. The 71 FDPs in 27 countries include approximately 7.33 million living trees and about 12,000 species, representing 20% of the world's known tree diversity. With >1300 published papers, ForestGEO researchers have made significant contributions in two fundamental areas: species coexistence and diversity, and ecosystem functioning. Specifically, defining the major biotic and abiotic controls on the distribution and coexistence of species and functional types and on variation in species' demography has led to improved understanding of how the multiple dimensions of forest diversity are structured across space and time and how this diversity relates to the processes controlling the role of forests in the Earth system. Nevertheless, knowledge gaps remain that impede our ability to predict how forest diversity and function will respond to climate change and other stressors. Meeting these global research challenges requires major advances in standardizing taxonomy of tropical species, resolving the main drivers of forest dynamics, and integrating plot-based ground and remote sensing observations to scale up estimates of forest diversity and function, coupled with improved predictive models. However, they cannot be met without greater financial commitment to sustain the long-term research of ForestGEO and other forest plot networks, greatly expanded scientific capacity across the world's forested nations, and increased collaboration and integration among research networks and disciplines addressing forest science.
  •  
2.
  • Leite, Melina de Souza, et al. (författare)
  • Major axes of variation in tree demography across global forests
  • 2024
  • Ingår i: Ecography. - 0906-7590 .- 1600-0587.
  • Tidskriftsartikel (refereegranskat)abstract
    • The future trajectory of global forests is closely intertwined with tree demography, and a major fundamental goal in ecology is to understand the key mechanisms governing spatio-temporal patterns in tree population dynamics. While previous research has made substantial progress in identifying the mechanisms individually, their relative importance among forests remains unclear mainly due to practical limitations. One approach to overcome these limitations is to group mechanisms according to their shared effects on the variability of tree vital rates and quantify patterns therein. We developed a conceptual and statistical framework (variance partitioning of Bayesian multilevel models) that attributes the variability in tree growth, mortality, and recruitment to variation in species, space, and time, and their interactions – categories we refer to as organising principles (OPs). We applied the framework to data from 21 forest plots covering more than 2.9 million trees of approximately 6500 species. We found that differences among species, the species OP, proved a major source of variability in tree vital rates, explaining 28–33% of demographic variance alone, and 14–17% in interaction with space, totalling 40–43%. Our results support the hypothesis that the range of vital rates is similar across global forests. However, the average variability among species declined with species richness, indicating that diverse forests featured smaller interspecific differences in vital rates. Moreover, decomposing the variance in vital rates into the proposed OPs showed the importance of unexplained variability, which includes individual variation, in tree demography. A focus on how demographic variance is organized in forests can facilitate the construction of more targeted models with clearer expectations of which covariates might drive a vital rate. This study therefore highlights the most promising avenues for future research, both in terms of understanding the relative contributions of groups of mechanisms to forest demography and diversity, and for improving projections of forest ecosystems.
  •  
3.
  • Lou, H., et al. (författare)
  • The cellulose synthase-like F3 (CslF3) gene mediates cell wall polysaccharide synthesis and affects root growth and differentiation in barley
  • 2022
  • Ingår i: The Plant Journal. - : Wiley. - 0960-7412 .- 1365-313X. ; 110:6, s. 1681-1699
  • Tidskriftsartikel (refereegranskat)abstract
    • The barley cellulose synthase-like F (CslF) genes encode putative cell wall polysaccharide synthases. They are related to the cellulose synthase (CesA) genes involved in cellulose biosynthesis, and the CslD genes that influence root hair development. Although CslD genes are implicated in callose, mannan and cellulose biosynthesis, and are found in both monocots and eudicots, CslF genes are specific to the Poaceae. Recently the barley CslF3 (HvCslF3) gene was shown to be involved in the synthesis of a novel (1,4)-β-linked glucoxylan, but it remains unclear whether this gene contributes to plant growth and development. Here, expression profiling using qRT-PCR and mRNA in situ hybridization revealed that HvCslF3 accumulates in the root elongation zone. Silencing HvCslF3 by RNAi was accompanied by slower root growth, linked with a shorter elongation zone and a significant reduction in root system size. Polymer profiling of the RNAi lines revealed a significant reduction in (1,4)-β-linked glucoxylan levels. Remarkably, the heterologous expression of HvCslF3 in wild-type (Col-0) and root hair-deficient Arabidopsis mutants (csld3 and csld5) complemented the csld5 mutant phenotype, in addition to altering epidermal cell fate. Our results reveal a key role for HvCslF3 during barley root development and suggest that members of the CslD and CslF gene families have similar functions during root growth regulation. 
  •  
4.
  • Needham, Jessica F., et al. (författare)
  • Demographic composition, not demographic diversity, predicts biomass and turnover across temperate and tropical forests
  • 2022
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 28, s. 2895-2909
  • Tidskriftsartikel (refereegranskat)abstract
    • The growth and survival of individual trees determine the physical structure of a forest with important consequences for forest function. However, given the diversity of tree species and forest biomes, quantifying the multitude of demographic strategies within and across forests and the way that they translate into forest structure and function remains a significant challenge. Here, we quantify the demographic rates of 1961 tree species from temperate and tropical forests and evaluate how demographic diversity (DD) and demographic composition (DC) differ across forests, and how these differences in demography relate to species richness, aboveground biomass (AGB), and carbon residence time. We find wide variation in DD and DC across forest plots, patterns that are not explained by species richness or climate variables alone. There is no evidence that DD has an effect on either AGB or carbon residence time. Rather, the DC of forests, specifically the relative abundance of large statured species, predicted both biomass and carbon residence time. Our results demonstrate the distinct DCs of globally distributed forests, reflecting biogeography, recent history, and current plot conditions. Linking the DC of forests to resilience or vulnerability to climate change, will improve the precision and accuracy of predictions of future forest composition, structure, and function.
  •  
5.
  • Piponiot, Camille, et al. (författare)
  • Distribution of biomass dynamics in relation to tree size in forests across the world
  • 2022
  • Ingår i: New Phytologist. - : Wiley. - 0028-646X .- 1469-8137. ; 234, s. 1664-1677
  • Tidskriftsartikel (refereegranskat)abstract
    • Tree size shapes forest carbon dynamics and determines how trees interact with their environment, including a changing climate. Here, we conduct the first global analysis of among-site differences in how aboveground biomass stocks and fluxes are distributed with tree size. We analyzed repeat tree censuses from 25 large-scale (4–52 ha) forest plots spanning a broad climatic range over five continents to characterize how aboveground biomass, woody productivity, and woody mortality vary with tree diameter. We examined how the median, dispersion, and skewness of these size-related distributions vary with mean annual temperature and precipitation. In warmer forests, aboveground biomass, woody productivity, and woody mortality were more broadly distributed with respect to tree size. In warmer and wetter forests, aboveground biomass and woody productivity were more right skewed, with a long tail towards large trees. Small trees (1–10 cm diameter) contributed more to productivity and mortality than to biomass, highlighting the importance of including these trees in analyses of forest dynamics. Our findings provide an improved characterization of climate-driven forest differences in the size structure of aboveground biomass and dynamics of that biomass, as well as refined benchmarks for capturing climate influences in vegetation demographic models.
  •  
6.
  • Schoch, Conrad L., et al. (författare)
  • Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi
  • 2014
  • Ingår i: Database: The Journal of Biological Databases and Curation. - : Oxford University Press (OUP). - 1758-0463. ; 2014:bau061, s. 1-21
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Re-annotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi.
  •  
7.
  • Wang, K., et al. (författare)
  • Amended soils with weathered coal exhibited greater resistance to aggregate breakdown than those with biochar : From the viewpoint of soil internal forces
  • 2024
  • Ingår i: Soil & Tillage Research. - : Elsevier B.V.. - 0167-1987 .- 1879-3444. ; 244
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil erosion is the first threat to soil functions. Reducing the soil aggregate breakdown strength is a key step to improve the soil's ability to resist rainfall splash erosion. Soil internal forces have been found to be the initial and important forces driving aggregate turnover. The application of exogenous organic materials can effectively improve soil aggregate stability and the resistance to rainfall erosion of agricultural soils. However, from the perspective of soil internal forces, information about the reduction effects of the exogenous organic materials application on soil aggregate breakdown is scarce, especially in comparing the effects of different materials. In this study, weathered coal and biochar were individually applied to loamy clay soil at rates of 0 %, 1 %, 2 %, and 3 % (w/w). Soil internal forces, aggregate breakdown strength, and splash erosion rate of different amended soils were then examined after four years. The results showed that compared with unamended soils (0 %), both weathered coal and biochar applications clearly increased the van der Waals attractive pressure and thus decreased the positive net pressure between soil particles. Additionally, these materials reduced soil aggregate breakdown strength and splash erosion rate. The application effects of the two materials were increased with their application rates. Under a lower electrolyte concentration in soil solution (0.0001 mol L−1), the aggregate breakdown strength in the soils amended with weathered coal was lower than that with biochar by 9.6 %, 23.2 %, and 17.7 % (when the diameter of broken aggregate was < 10 μm) and by 10.3 %, 20.8 %, and 17.5 % (when the diameter of broken aggregate was < 20 μm) at the 1 %, 2 %, and 3 % application rates, respectively (P < 0.05). Additionally, soils amended with weathered coal exhibited lower splash erosion rates compared to those amended with biochar, particularly at the higher application rate of 3 %. From the viewpoint of soil internal forces, weathered coal appears to be a suitable exogenous organic material for improving soil aggregate stability and anti-erosion ability during rainfall events. Our findings provide valuable insights into utilizing exogenous materials to improve soil resistance to rainfall splash erosion, assisting agricultural soil management in areas frequently affected by rainfall erosion.
  •  
8.
  • Berner, Logan T., et al. (författare)
  • The Arctic plant aboveground biomass synthesis dataset
  • 2024
  • Ingår i: Scientific Data. - : Springer Nature. - 2052-4463. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems. Here, we present The Arctic plant aboveground biomass synthesis dataset, which includes field measurements of lichen, bryophyte, herb, shrub, and/or tree aboveground biomass (g m−2) on 2,327 sample plots from 636 field sites in seven countries. We created the synthesis dataset by assembling and harmonizing 32 individual datasets. Aboveground biomass was primarily quantified by harvesting sample plots during mid- to late-summer, though tree and often tall shrub biomass were quantified using surveys and allometric models. Each biomass measurement is associated with metadata including sample date, location, method, data source, and other information. This unique dataset can be leveraged to monitor, map, and model plant biomass across the rapidly warming Arctic.
  •  
9.
  • Xie, Z., et al. (författare)
  • Physiological responses to salinity change and diel-cycling hypoxia in gills of Hong Kong oyster Crassostrea hongkongensis
  • 2023
  • Ingår i: Aquaculture. - : Elsevier BV. - 0044-8486. ; 570
  • Tidskriftsartikel (refereegranskat)abstract
    • Global climate change is a frequent cause of salinity fluctuation in seawater, especially in aquaculture sites. Moreover, anthropologic activities often cause seawater eutrophication with the consequence that hypoxia ap-pears often during nighttime. The Hong Kong oyster Crassostrea hongkongensis, as a species that inhabits estuarine and coastal waters, is faced with such challenges. In this study, oyster physiological changes were considered to be closely related to hypoxia and salinity changes. Physiological indices were examined in Hong Kong oysters by employing six treatments to shed light into the effects of diel-cycling hypoxia (periodical hypoxia) and salinity change. Three salinities (10%o, low salinity; 25%o, normal salinity; and 35%o, high salinity) and two types of dissolved oxygen (normoxia, 6 mg/L throughout the day) and periodical hypoxic condition (6 mg/L at daytime for 12 h and 2 mg/L at nighttime for 12 h) were set. After 14-and 28-day exposures, gill tissues were sampled to detect changes in gill ATP production, mitochondrial membrane potential (MMP), mitochondrial reactive oxygen species production (ROS), and gill respiratory metabolic enzymes. Results indicated that periodical hypoxia and salinity change led to increased hexokinase (HK) and pyruvate kinase (PK) (p < 0.05). By contrast, they had no significant effect on mitochondrial number (MN). Adenosine-triphosphate (ATP) production only increased in the early exposure. In addition, low salinity with periodical hypoxia resulted in decreased MMP, lactate dehy-drogenase (LDH), and succinate dehydrogenase (SDH, p < 0.05). On the contrary, periodical hypoxia with high salinity led to increases in ATP and ROS and decreases in SDH, MMP, and LDH (p < 0.05). These results revealed that when diel-cycling hypoxia occurs with salinity change, the gill metabolism of Hong Kong oysters are gradually dominated by glycolysis while aerobic respiration decreases. Moreover, gill functions could be affected although energy accumulation exists during early exposure. Therefore, long-term exposure to periodical hypoxia with salinity change poses risk to the health and growth of Hong Kong oysters, impairing oyster aquaculture and coastal ecosystem health.
  •  
10.
  • Chen, Yang, et al. (författare)
  • The Promotion of Eating Behaviour Change through Digital Interventions
  • 2020
  • Ingår i: International Journal of Environmental Research and Public Health. - : MDPI. - 1661-7827 .- 1660-4601. ; 17:20
  • Forskningsöversikt (refereegranskat)abstract
    • Diet-related chronic disease is a global health epidemic giving rise to a high incidence of morbidity and mortality. With the rise of the digital revolution, there has been increased interest in using digital technology for eating behavioural change as a mean of diet-related chronic disease prevention. However, evidence on digital dietary behaviour change is relatively scarce. To address this problem, this review considers the digital interventions currently being used in dietary behaviour change studies. A literature search was conducted in databases like PubMed, Cochrane Library, CINAHL, Medline, and PsycInfo. Among 119 articles screened, 15 were selected for the study as they met all the inclusion criteria according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) search strategy. Four primary digital intervention methods were noted: use of personal digital assistants, use of the internet as an educational tool, use of video games and use of mobile phone applications. The efficiency of all the interventions increased when coupled with tailored feedback and counselling. It was established that the scalable and sustainable properties of digital interventions have the potential to bring about adequate changes in the eating behaviour of individuals. Further research should concentrate on the appropriate personalisation of the interventions, according to the requirements of the individuals, and proper integration of behaviour change techniques to motivate long-term adherence. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (14)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (16)
Författare/redaktör
Zuleta, Daniel, 1990 (6)
Davies, Stuart J. (6)
Duque, Álvaro (6)
Chang-Yang, Chia Hao (6)
McMahon, Sean M. (6)
Kenfack, David (4)
visa fler...
Makana, Jean Remy (4)
Aguilar, Salomón (4)
Bunyavejchewin, Sara ... (4)
Cárdenas, Dairon (4)
Chuyong, George (4)
Itoh, Akira (4)
Lutz, James A. (4)
Malhi, Yadvinder (3)
Uriarte, María (3)
Arellano, Gabriel (3)
Thompson, Jill (3)
Ewango, Corneille E. ... (3)
Bourg, Norman A. (3)
Chen, Yu Yun (3)
Ediriweera, Sisira (3)
Hubbell, Stephen P. (3)
Johnson, Daniel J. (3)
Král, Kamil (3)
Mitre, David (3)
Muller-Landau, Helen ... (3)
Anderson-Teixeira, K ... (3)
Zimmerman, Jess K. (2)
Burslem, David F. R. ... (2)
Yuan, Zuoqiang (2)
Castaño, Nicolas (2)
McShea, William (2)
Allen, David (2)
Brockelman, Warren Y ... (2)
Cao, Min (2)
Clay, Keith (2)
Cordell, Susan (2)
Dattaraja, Handanake ... (2)
Fernando, Edwino S. (2)
Filip, Jonah (2)
Foster, Robin (2)
Gunatilleke, I. A.U. ... (2)
Gunatilleke, C. V.S. (2)
Hao, Zhanqing (2)
Janík, David (2)
Larson, Andrew J. (2)
McShea, William J. (2)
Mi, Xiangcheng (2)
Mohamad, Mohizah (2)
Howe, Robert (2)
visa färre...
Lärosäte
Göteborgs universitet (8)
Lunds universitet (3)
Umeå universitet (2)
Sveriges Lantbruksuniversitet (2)
Kungliga Tekniska Högskolan (1)
Uppsala universitet (1)
visa fler...
Mälardalens universitet (1)
Naturhistoriska riksmuseet (1)
visa färre...
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (11)
Medicin och hälsovetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy