SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yang Xia) ;lar1:(lnu)"

Sökning: WFRF:(Yang Xia) > Linnéuniversitetet

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Yang, Shilei, et al. (författare)
  • Impact of grassland degradation on the distribution and bioavailability of soil silicon: Implications for the Si cycle in grasslands
  • 2019
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 657, s. 811-818
  • Tidskriftsartikel (refereegranskat)abstract
    • Grassland ecosystems play an important role in the global terrestrial silicon (Si) cycle, and Si is a beneficial elementand structural constituent for the growth of grasses. In previous decades, grasslands have been degradedto different degrees because of the drying climate and intense human disturbance. However, the impact of grasslanddegradation on the distribution and bioavailability of soil Si is largely unknown. Here, we investigated vegetationand soil conditions of 30 sites to characterize different degrees of degradation for grasslands in the agropastoralecotone of northern China. We then explored the impact of grassland degradation on the distributionand bioavailability of soil Si, including total Si and four forms of noncrystalline Si in three horizons (0–10,10–20 and 20–40 cm) of different soil profiles. The concentrations of noncrystalline Si in soil profiles significantlydecreased with increasing degrees of degradation, being 7.35 ± 0.88 mg g−1, 5.36 ± 0.39 mg g−1, 3.81 ±0.37 mg g−1 and 3.60±0.26 mg g−1 in non-degraded, lightly degraded, moderately degraded and seriously degradedgrasslands, respectively. Moreover, the storage of noncrystalline Si decreased from higher than 40 t ha−1to lower than 23 t ha−1. The corresponding bioavailability of soil Si also generally decreased with grassland degradation.These processes may not only affect the Si pools and fluxes in soils but also influence the Si uptake in plants. We suggest that grassland degradation can significantly affect the global grassland Si cycle. Grasslandmanagement methods such as fertilizing and avoiding overgrazing can potentially double the content and storageof noncrystalline Si in soils, thereby enhancing the soil Si bioavailability by N17%.
  •  
2.
  • Li, Zichuan, et al. (författare)
  • Impacts of silicon on biogeochemical cycles of carbon and nutrients in croplands
  • 2018
  • Ingår i: Journal of Integrative Agriculture. - : Elsevier. - 2095-3119. ; 17:10, s. 2182-2195
  • Forskningsöversikt (refereegranskat)abstract
    • Crop harvesting and residue removal from croplands often result in imbalanced biogeochemical cycles of carbon and nutrients in croplands, putting forward an austere challenge to sustainable agricultural production. As a beneficial element, silicon(Si) has multiple eco-physiological functions, which could help crops to acclimatize their unfavorable habitats. Although many studies have reported that the application of Si can alleviate multiple abiotic and biotic stresses and increase biomass accumulation, the effects of Si on carbon immobilization and nutrients uptake into plants in croplands have not yet been explored. This review focused on Si-associated regulation of plant carbon accumulation, lignin biosynthesis, and nutrients uptake, which are important for biogeochemical cycles of carbon and nutrients in croplands. The tradeoff analysis   the supply of bioavailable Si can enhance plant net photosynthetic rate and biomass carbon production (especially root biomass input to soil organic carbon pool), but reduce shoot lignin biosynthesis. Besides, the application of Si could improve uptake of most nutrients under deficient conditions, but restricts excess uptake when they are supplied in surplus amounts. Nevertheless, Si application to crops may enhance the uptake of nitrogen and iron when they are supplied in deficient to luxurious amounts, while potassium uptake enhanced by Si application is often involved in alleviating salt stress and inhibiting excess sodium uptake in plants. More importantly, the amount of Si accumulated in plant positively correlates with nutrients release during the decay of crop biomass, but negatively correlates with straw decomposability due to the reduced lignin synthesis. The Si-mediated plant growth and litter decomposition collectively suggest that Si cycling in croplands plays important roles in biogeochemical cycles of carbon and nutrients. Hence, scientific Si management in croplands will be helpful for maintaining sustainable development of agriculture.
  •  
3.
  • Wu, Lele, et al. (författare)
  • Organic matter composition and stability in estuarine wetlands depending on soil salinity
  • 2024
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 945
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal wetlands are key players in mitigating global climate change by sequestering soil organic matter. Soil organic matter consists of less stable particulate organic matter (POM) and more stable mineral -associated organic matter (MAOM). The distribution and drivers of MAOM and POM in coastal wetlands have received little attention, despite the processes and mechanisms differ from that in the upland soils. We explored the distribution of POM and MAOM, their contributions to SOM, and the controlling factors along a salinity gradient in an estuarine wetland. In the estuarine wetland, POM C and N were influenced by soil depth and vegetation type, whereas MAOM C and N were influenced only by vegetation type. In the estuarine wetland, SOM was predominantly in the form of MAOM ( > 70 %) and increased with salinity (70 % -76 %), leading to long-term C sequestration. Both POM and MAOM increased with SOM, and the increase rate of POM was higher than that of MAOM. Aboveground plant biomass decreased with increasing salinity, resulted in a decrease in POM C (46 % - 81 %) and N (52 % -82 %) pools. As the mineral amount and activity, and microbial biomass decreased, the MAOM C (2.5 % -64 %) and N pool (8.6 % -59 %) decreased with salinity. When evaluating POM, the most influential factors were microbial biomass carbon (MBC) and dissolved organic carbon (DOC). Key parameters, including MBC, DOC, soil salinity, soil water content, aboveground plant biomass, mineral content and activity, and bulk density, were identified as influencing factors for both MAOM abundance. Soil water content not only directly controlled MAOM, but together with salinity also indirectly regulated POM and MAOM by controlling microbial biomass and aboveground plant biomass. Our findings have important implications for improving the accumulation and increased stability of soil organic matter in coastal wetlands, considering the global sea level rise and increased frequency of inundation.
  •  
4.
  • Xia, Shaopan, et al. (författare)
  • Storage, patterns and influencing factors for soil organic carbon in coastal wetlands of China
  • 2022
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 28:20, s. 6065-6085
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil organic carbon (SOC) in coastal wetlands, also known as "blue C," is an essential component of the global C cycles. To gain a detailed insight into blue C storage and controlling factors, we studied 142 sites across ca. 5000 km of coastal wetlands, covering temperate, subtropical, and tropical climates in China. The wetlands represented six vegetation types (Phragmites australis, mixed of P. australis and Suaeda, single Suaeda, Spartina alterniflora, mangrove [Kandelia obovata and Avicennia marina], tidal flat) and three vegetation types invaded by S. alterniflora (P. australis, K. obovata, A. marina). Our results revealed large spatial heterogeneity in SOC density of the top 1-m ranging 40-200 Mg C ha(-1), with higher values in mid-latitude regions (25-30 degrees N) compared with those in both low- (20 degrees N) and high-latitude (38-40 degrees N) regions. Vegetation type influenced SOC density, with P. australis and S. alterniflora having the largest SOC density, followed by mangrove, mixed P. australis and Suaeda, single Suaeda and tidal flat. SOC density increased by 6.25 Mg ha(-1) following S. alterniflora invasion into P. australis community but decreased by 28.56 and 8.17 Mg ha(-1) following invasion into K. obovata and A. marina communities. Based on field measurements and published literature, we calculated a total inventory of 57 x 10(6) Mg C in the top 1-m soil across China's coastal wetlands. Edaphic variables controlled SOC content, with soil chemical properties explaining the largest variance in SOC content. Climate did not control SOC content but had a strong interactive effect with edaphic variables. Plant biomass and quality traits were a minor contributor in regulating SOC content, highlighting the importance of quantity and quality of OC inputs and the balance between production and degradation within the coastal wetlands. These findings provide new insights into blue C stabilization mechanisms and sequestration capacity in coastal wetlands.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy