SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yates G. J.) ;pers:(Viti S.)"

Sökning: WFRF:(Yates G. J.) > Viti S.

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Matsuura, M., et al. (författare)
  • ALMA observations of Molecules in Supernova 1987A
  • 2017
  • Ingår i: Proceedings of the International Astronomical Union. - : Cambridge University Press. - 1743-9213 .- 1743-9221. ; :S331, s. 294-299
  • Tidskriftsartikel (refereegranskat)abstract
    • Supernova (SN) 1987A has provided a unique opportunity to study how SN ejecta evolve in 30 years time scale. We report our ALMA spectral observations of SN 1987A, taken in 2014, 2015 and 2016, with detections of CO, 28SiO, HCO+ and SO, with weaker lines of 29SiO. We find a dip in the SiO line profiles, suggesting that the ejecta morphology is likely elongated. The difference of the CO and SiO line profiles is consistent with hydrodynamic simulations, which show that Rayleigh-Taylor instabilities causes mixing of gas, with heavier elements much more disturbed, making more elongated structure. Using 28SiO and its isotopologues, Si isotope ratios were estimated for the first time in SN 1987A. The estimated ratios appear to be consistent with theoretical predictions of inefficient formation of neutron rich atoms at lower metallicity, such as observed in the Large Magellanic Cloud (about half a solar metallicity). The deduced large HCO+ mass and small SiS mass, which are inconsistent to the predictions of chemical model, might be explained by some mixing of elements immediately after the explosion. The mixing might have made some hydrogen from the envelope to sink into carbon and oxygen-rich zone during early days after the explosion, enabling the formation of a substantial mass of HCO+. Oxygen atoms may penetrate into silicon and sulphur zone, suppressing formation of SiS. Our ALMA observations open up a new window to investigate chemistry, dynamics and explosive-nucleosynthesis in supernovae. 
  •  
2.
  • Matsuura, M., et al. (författare)
  • ALMA spectral survey of Supernova 1987A-molecular inventory, chemistry, dynamics and explosive nucleosynthesis
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 469:3, s. 3347-3362
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first molecular line survey of Supernova 1987A in the millimetre wavelength range. In the Atacama Large Millimeter/submillimeter Array (ALMA) 210-300 and 340360 GHz spectra, we detected cold (20-170 K) CO, (SiO)-Si-28, HCO+ and SO, with weaker lines of 29SiO from ejecta. This is the first identification of HCO+ and SO in a young supernova remnant. We find a dip in the J = 6-5 and 5-4 SiO line profiles, suggesting that the ejecta morphology is likely elongated. The difference of theCOand SiO line profiles is consistent with hydrodynamic simulations, which showthat Rayleigh-Taylor instabilities causemixing of gas, with heavier elements much more disturbed, making more elongated structure. We obtained isotopologue ratios of (SiO)-Si-28/(SiO)-Si-29> 13, (SiO)-Si-28/(SiO)-Si-30> 14 and (CO)-C-12/(CO)-C-13 > 21, with the most likely limits of (SiO)-Si-28/(SiO)-Si-29 > 128, (SiO)-Si-28/(SiO)-Si-30 > 189. Low Si-29 and Si-30 abundances in SN 1987A are consistent with nucleosynthesis models that show inefficient formation of neutron-rich isotopes in a low-metallicity environment, such as the Large Magellanic Cloud. The deduced large mass of HCO+ (similar to 5 x 10(-6)M(circle dot)) and small SiS mass (< 6 x 10-5M(circle dot)) might be explained by some mixing of elements immediately after the explosion. The mixing might have caused some hydrogen from the envelope to sink into carbon- and oxygen-rich zones after the explosion, enabling the formation of a substantial mass of HCO+. Oxygen atoms may have penetrated into silicon and sulphur zones, suppressing formation of SiS. Our ALMA observations open up a new window to investigate chemistry, dynamics and explosive nucleosynthesis in supernovae.
  •  
3.
  • Bisbas, Thomas G., et al. (författare)
  • TORUS-3DPDR : a self-consistent code treating three-dimensional photoionization and photodissociation regions
  • 2015
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 454:3, s. 2828-2843
  • Tidskriftsartikel (refereegranskat)abstract
    • The interaction of ionizing and far-ultraviolet radiation with the interstellar medium is of great importance. It results in the formation of regions in which the gas is ionized, beyond which are photodissociation regions (PDRs) in which the gas transitions to its atomic and molecular form. Several numerical codes have been implemented to study these two main phases of the interstellar medium either dynamically or chemically. In this paper we present TORUS-3DPDR, a new self-consistent code for treating the chemistry of three-dimensional photoionization and photodissociation regions. It is an integrated code coupling the two codes TORUS, a hydrodynamics and Monte Carlo radiation transport code, and 3D-PDR, a PDRs code. The new code uses a Monte Carlo radiative transfer scheme to account for the propagation of the ionizing radiation including the diffusive component as well as a ray-tracing scheme based on the HEALPIX package in order to account for the escape probability and column density calculations. Here, we present the numerical techniques we followed and we show the capabilities of the new code in modelling three-dimensional objects including single or multiple sources. We discuss the effects introduced by the diffusive component of the ultraviolet field in determining the thermal balance of PDRs as well as the effects introduced by a multiple sources treatment of the radiation field. With this new code, three-dimensional synthetic observations for the major cooling lines are possible, for making feasible a detailed comparison between hydrodynamical simulations and observations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy