SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yousuf A) "

Sökning: WFRF:(Yousuf A)

  • Resultat 1-10 av 13
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Abbafati, Cristiana, et al. (författare)
  • 2020
  • Tidskriftsartikel (refereegranskat)
  •  
6.
  • Bakhit, Yousuf, et al. (författare)
  • Intrafamilial and interfamilial heterogeneity of PINK1-associated Parkinson's disease in Sudan
  • 2023
  • Ingår i: Parkinsonism & Related Disorders. - : Elsevier. - 1353-8020 .- 1873-5126. ; 111
  • Tidskriftsartikel (refereegranskat)abstract
    • PINK1 is the second most predominant gene associated with autosomal recessive Parkinson's disease. Homo-zygous mutations in this gene are associated with an early onset of symptoms. Bradykinesia, tremors, and rigidity are common features, while dystonia, motor fluctuation, and non-motor symptoms occur in a lower percentage of cases and usually respond well to levodopa. We investigated 14 individuals with parkinsonism and eleven symptom-free siblings from three consanguineous Sudanese families, two of them multigenerational, using a custom gene panel screening 34 genes, 27 risk variants, and 8 candidate genes associated with parkinsonism. We found a known pathogenic nonsense PINK1 variant (NM_032409.3:c.1366C>T; p.(Gln456*)), a novel pathogenic single base duplication (NM_032409.3:c.1597dup; p.(Gln533Profs*29)), and another novel pathogenic insertion (NM_032409.3:c.1448_1449ins[1429_1443; TTGAG]; p.(Arg483Serfs*7)). All variants were homozygous and co -segregated in all affected family members. We also identified intrafamilial and interfamilial phenotypic het-erogeneity associated with PINK1 mutations in these Sudanese cases, possibly reflecting the nature of the Sudanese population that has a large effective population size, which suggests a higher possibility of novel findings in monogenic and polygenic diseases in Sudan.
  •  
7.
  • Haridass, Isha N., et al. (författare)
  • Cellular metabolism and pore lifetime of human skin following microprojection array mediation
  • 2019
  • Ingår i: Journal of Controlled Release. - : ELSEVIER SCIENCE BV. - 0168-3659 .- 1873-4995. ; 306, s. 59-68
  • Tidskriftsartikel (refereegranskat)abstract
    • Skin-targeting microscale medical devices are becoming popular for therapeutic delivery and diagnosis. We used cryo-SEM, fluorescence lifetime imaging microscopy (FLIM), autofluorescence imaging microscopy and inflammatory response to study the puncturing and recovery of human skin ex vivo and in vivo after discretised puncturing by a microneedle array (Nanopatch (R)). Pores induced by the microprojections were found to close by similar to 25% in diameter within the first 30 min, and almost completely close by similar to 6 h. FLIM images of ex vivo viable epidermis showed a stable fluorescence lifetime for unpatched areas of similar to 1000 ps up to 24 h. Only the cells in the immediate puncture zones (in direct contact with projections) showed a reduction in the observed fluorescence lifetimes to between similar to 518-583 ps. The ratio of free-bound NAD(P)H (alpha 1/alpha 2) in unaffected areas of the viable epidermis was similar to 2.5-3.0, whereas the ratio at puncture holes was almost double at similar to 4.2-4.6. An exploratory pilot in vivo study also suggested similar closure rate with histamine administration to the forearms of human volunteers after Nanopatch (R) treatment, although a prolonged inflammation was observed with Tissue Viability Imaging. Overall, this work shows that the pores created by the microneedle-type medical device, Nanopatch (R), are transient, with the skin recovering rapidly within 1-2 days in the epidermis after application.
  •  
8.
  • Baltzell, A, et al. (författare)
  • Theory to Practice to Enhance Performance
  • 2019
  • Ingår i: Proceedings of The 15th European Congress of Sport Psychology (FEPSAC).
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
9.
  • Gadallah, Adel S., et al. (författare)
  • Anti-Inflammatory Principles from Tamarix aphylla L. : A Bioassay-Guided Fractionation Study
  • 2020
  • Ingår i: Molecules. - : MDPI AG. - 1431-5157 .- 1420-3049. ; 25:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural products have served as primary remedies since ancient times due to their cultural acceptance and outstanding biodiversity. To investigate whether Tamarix aphylla L. modulates an inflammatory process, we carried out bioassay-guided isolation where the extracts and isolated compounds were tested for their modulatory effects on several inflammatory indicators, such as nitric oxide (NO), reactive oxygen species (ROS), proinflammatory cytokine; tumour necrosis factor (TNF-alpha), as well as the proliferation of the lymphocyte T-cells. The aqueous ethanolic extract of the plant inhibited the intracellular ROS production, NO generation, and T-cell proliferation. The aqueous ethanolic crude extract was partitioned by liquid-liquid fractionation using n-hexane (n-C6H6), dichloromethane (DCM), ethyl acetate (EtOAc),n-butanol (n-BuOH), and water (H2O). The DCM and n-BuOH extracts showed the highest activity against most inflammatory indicators and were further purified to obtain compounds 1-4. The structures of 3,5-dihydroxy-4',7-dimethoxyflavone (1) and 3,5-dihydroxy-4-methoxybenzoic acid methyl ester (2) from the DCM extracts; and kaempferol (3), and 3-hydroxy-4-methoxy-(E)-cinnamic acid (4) from then-BuOH extract were elucidated by different spectroscopic tools, including MS, NMR, UV, and IR. Compound 2 inhibited the production of ROS and TNF-alpha, whereas compound 3 showed inhibitory activity against all the tested mediators. A better understanding of the potential aspect of Tamarix aphylla L. derivatives as anti-inflammatory agents could open the door for the development of advanced anti-inflammatory entities.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
  • [1]2Nästa

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy