SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zetterberg H) ;pers:(Lleó A.)"

Sökning: WFRF:(Zetterberg H) > Lleó A.

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Rojas, I., et al. (författare)
  • Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic discoveries of Alzheimer’s disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer’s disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer’s disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer’s disease. © 2021, The Author(s).
  •  
2.
  •  
3.
  •  
4.
  • Kruse, N., et al. (författare)
  • Validation of a quantitative cerebrospinal fluid alpha-synuclein assay in a European-wide interlaboratory study
  • 2015
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580. ; 36:9, s. 2587-2596
  • Tidskriftsartikel (refereegranskat)abstract
    • Decreased levels of alpha-synuclein (aSyn) in cerebrospinal fluid (CSF) in Parkinson's disease and related synucleinopathies have been reported, however, not consistently in all cross-sectional studies. To test the performance of one recently released human-specific enzyme-linked immunosorbent assay (ELISA) for the quantification of aSyn in CSF, we carried out a round robin trial with 18 participating laboratories trained in CSF ELISA analyses within the BIOMARKAPD project in the EU Joint Program -Neurodegenerative Disease Research. CSF samples (homogeneous aliquots from pools) and ELISA kits (one lot) were provided centrally and data reported back to one laboratory for data analysis. Our study showed that although factors such as preanalytical sample handling and lot-to-lot variability were minimized by our study design, we identified high variation in absolute values of CSF aSyn even when the same samples and same lots of assays were applied. We further demonstrate that although absolute concentrations differ between laboratories the quantitative results are comparable. With further standardization this assay may become an attractive tool for comparing aSyn measurements in diverse settings. Recommendations for further validation experiments and improvement of the interlaboratory results obtained are given. (C) 2015 Elsevier Inc. All rights reserved.
  •  
5.
  •  
6.
  • Mattsson, Niklas, 1979, et al. (författare)
  • CSF biomarker variability in the Alzheimer's Association quality control program
  • 2013
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 9:3, s. 251-261
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The cerebrospinal fluid (CSF) biomarkers amyloid beta 1–42, total tau, and phosphorylated tau are used increasingly for Alzheimer's disease (AD) research and patient management. However, there are large variations in biomarker measurements among and within laboratories. Methods Data from the first nine rounds of the Alzheimer's Association quality control program was used to define the extent and sources of analytical variability. In each round, three CSF samples prepared at the Clinical Neurochemistry Laboratory (Mölndal, Sweden) were analyzed by single-analyte enzyme-linked immunosorbent assay (ELISA), a multiplexing xMAP assay, or an immunoassay with electrochemoluminescence detection. Results A total of 84 laboratories participated. Coefficients of variation (CVs) between laboratories were around 20% to 30%; within-run CVs, less than 5% to 10%; and longitudinal within-laboratory CVs, 5% to 19%. Interestingly, longitudinal within-laboratory CV differed between biomarkers at individual laboratories, suggesting that a component of it was assay dependent. Variability between kit lots and between laboratories both had a major influence on amyloid beta 1–42 measurements, but for total tau and phosphorylated tau, between-kit lot effects were much less than between-laboratory effects. Despite the measurement variability, the between-laboratory consistency in classification of samples (using prehoc-derived cutoffs for AD) was high (>90% in 15 of 18 samples for ELISA and in 12 of 18 samples for xMAP). Conclusions The overall variability remains too high to allow assignment of universal biomarker cutoff values for a specific intended use. Each laboratory must ensure longitudinal stability in its measurements and use internally qualified cutoff levels. Further standardization of laboratory procedures and improvement of kit performance will likely increase the usefulness of CSF AD biomarkers for researchers and clinicians.
  •  
7.
  • van der Lee, S. J., et al. (författare)
  • A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity
  • 2019
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 138:2, s. 237-250
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic variant rs72824905-G (minor allele) in the PLCG2 gene was previously associated with a reduced Alzheimer's disease risk (AD). The role of PLCG2 in immune system signaling suggests it may also protect against other neurodegenerative diseases and possibly associates with longevity. We studied the effect of the rs72824905-G on seven neurodegenerative diseases and longevity, using 53,627 patients, 3,516 long-lived individuals and 149,290 study-matched controls. We replicated the association of rs72824905-G with reduced AD risk and we found an association with reduced risk of dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD). We did not find evidence for an effect on Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) risks, despite adequate sample sizes. Conversely, the rs72824905-G allele was associated with increased likelihood of longevity. By-proxy analyses in the UK Biobank supported the associations with both dementia and longevity. Concluding, rs72824905-G has a protective effect against multiple neurodegenerative diseases indicating shared aspects of disease etiology. Our findings merit studying the PLC gamma 2 pathway as drug-target.
  •  
8.
  • Kleinberger, G., et al. (författare)
  • TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis
  • 2014
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 6:243
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic variants in the triggering receptor expressed on myeloid cells 2 (TREM2) have been linked to Nasu-Hakola disease, Alzheimer's disease (AD), Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia (FTD), and FTD-like syndrome without bone involvement. TREM2 is an innate immune receptor preferentially expressed by microglia and is involved in inflammation and phagocytosis. Whether and how TREM2 missense mutations affect TREM2 function is unclear. We report that missense mutations associated with FTD and FTD-like syndrome reduce TREM2 maturation, abolish shedding by ADAM proteases, and impair the phagocytic activity of TREM2-expressing cells. As a consequence of reduced shedding, TREM2 is virtually absent in the cerebrospinal fluid (CSF) and plasma of a patient with FTD-like syndrome. A decrease in soluble TREM2 was also observed in the CSF of patients with AD and FTD, further suggesting that reduced TREM2 function may contribute to increased risk for two neurodegenerative disorders.
  •  
9.
  •  
10.
  • Bejanin, A., et al. (författare)
  • Association of Apolipoprotein e ϵ4 Allele with Clinical and Multimodal Biomarker Changes of Alzheimer Disease in Adults with down Syndrome
  • 2021
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149. ; 78:8, s. 937-947
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Alzheimer disease (AD) is the leading cause of death in individuals with Down syndrome (DS). Previous studies have suggested that the APOE ϵ4 allele plays a role in the risk and age at onset of dementia in DS; however, data on in vivo biomarkers remain scarce. Objective: To investigate the association of the APOE ϵ4 allele with clinical and multimodal biomarkers of AD in adults with DS. Design, Setting, and Participants: This dual-center cohort study recruited adults with DS in Barcelona, Spain, and in Cambridge, UK, between June 1, 2009, and February 28, 2020. Included individuals had been genotyped for APOE and had at least 1 clinical or AD biomarker measurement; 2 individuals were excluded because of the absence of trisomy 21. Participants were either APOE ϵ4 allele carriers or noncarriers. Main Outcomes and Measures: Participants underwent a neurological and neuropsychological assessment. A subset of participants had biomarker measurements: Aβ1-42, Aβ1-40, phosphorylated tau 181 (pTau181) and neurofilament light chain (NfL) in cerebrospinal fluid (CSF), pTau181, and NfL in plasma; amyloid positron emission tomography (PET); fluorine 18-labeled-fluorodeoxyglucose PET; and/or magnetic resonance imaging. Age at symptom onset was compared between APOE ϵ4 allele carriers and noncarriers, and within-group local regression models were used to compare the association of biomarkers with age. Voxelwise analyses were performed to assess topographical differences in gray matter metabolism and volume. Results: Of the 464 adults with DS included in the study, 97 (20.9%) were APOE ϵ4 allele carriers and 367 (79.1%) were noncarriers. No differences between the 2 groups were found by age (median [interquartile range], 45.9 [36.4-50.2] years vs 43.7 [34.9-50.2] years; P =.56) or sex (51 male carriers [52.6%] vs 199 male noncarriers [54.2%]). APOE ϵ4 allele carriers compared with noncarriers presented with AD symptoms at a younger age (mean [SD] age, 50.7 [4.4] years vs 52.7 [5.8] years; P =.02) and showed earlier cognitive decline. Locally estimated scatterplot smoothing curves further showed between-group differences in biomarker trajectories with age as reflected by nonoverlapping CIs. Specifically, carriers showed lower levels of the CSF Aβ1-42 to Aβ1-40 ratio until age 40 years, earlier increases in amyloid PET and plasma pTau181, and earlier loss of cortical metabolism and hippocampal volume. No differences were found in NfL biomarkers or CSF total tau and pTau181. Voxelwise analyses showed lower metabolism in subcortical and parieto-occipital structures and lower medial temporal volume in APOE ϵ4 allele carriers. Conclusions and Relevance: In this study, the APOE ϵ4 allele was associated with earlier clinical and biomarker changes of AD in DS. These results provide insights into the mechanisms by which APOE increases the risk of AD, emphasizing the importance of APOE genotype for future clinical trials in DS. © 2021 American Medical Association. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy