SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zetterberg H) ;pers:(Skoog Ingmar 1954)"

Sökning: WFRF:(Zetterberg H) > Skoog Ingmar 1954

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Rojas, I., et al. (författare)
  • Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic discoveries of Alzheimer’s disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer’s disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer’s disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer’s disease. © 2021, The Author(s).
  •  
2.
  • Wightman, D. P., et al. (författare)
  • A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease
  • 2021
  • Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 53:9, s. 1276-1282
  • Tidskriftsartikel (refereegranskat)abstract
    • Late-onset Alzheimer’s disease is a prevalent age-related polygenic disease that accounts for 50–70% of dementia cases. Currently, only a fraction of the genetic variants underlying Alzheimer’s disease have been identified. Here we show that increased sample sizes allowed identification of seven previously unidentified genetic loci contributing to Alzheimer’s disease. This study highlights microglia, immune cells and protein catabolism as relevant to late-onset Alzheimer’s disease, while identifying and prioritizing previously unidentified genes of potential interest. We anticipate that these results can be included in larger meta-analyses of Alzheimer’s disease to identify further genetic variants that contribute to Alzheimer’s pathology.
  •  
3.
  • Badji, A., et al. (författare)
  • Cerebrospinal Fluid Biomarkers, Brain Structural and Cognitive Performances Between Normotensive and Hypertensive Controlled, Uncontrolled and Untreated 70-Year-Old Adults
  • 2022
  • Ingår i: Frontiers in Aging Neuroscience. - : Frontiers Media SA. - 1663-4365. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Hypertension is an important risk factor for Alzheimer's disease (AD). The pathophysiological mechanisms underlying the relationship between AD and hypertension are not fully understood, but they most likely involve microvascular dysfunction and cerebrovascular pathology. Although previous studies have assessed the impact of hypertension on different markers of brain integrity, no study has yet provided a comprehensive comparison of cerebrospinal fluid (CSF) biomarkers and structural brain differences between normotensive and hypertensive groups in a single and large cohort of older adults in relationship to cognitive performances.Objective: The aim of the present work was to investigate the differences in cognitive performances, CSF biomarkers and magnetic resonance imaging (MRI) of brain structure between normotensive, controlled hypertensive, uncontrolled hypertensive, and untreated hypertensive older adults from the Gothenburg H70 Birth Cohort Studies.Methods: As an indicator of vascular brain pathology, we measured white matter hyperintensities (WMHs), lacunes, cerebral microbleeds, enlarged perivascular space (epvs), and fractional anisotropy (FA). To assess markers of AD pathology/neurodegeneration, we measured hippocampal volume, temporal cortical thickness on MRI, and amyloid-beta(42), phosphorylated tau, and neurofilament light protein (NfL) in cerebrospinal fluid. Various neuropsychological tests were used to assess performances in memory, attention/processing speed, executive function, verbal fluency, and visuospatial abilities.Results: We found more white matter pathology in hypertensive compared to normotensive participants, with the highest vascular burden in uncontrolled participants (e.g., lower FA, more WMHs, and epvs). No significant difference was found in any MRI or CSF markers of AD pathology/neurodegeneration when comparing normotensive and hypertensive participants, nor among hypertensive groups. No significant difference was found in most cognitive functions between groups.Conclusion: Our results suggest that good blood pressure control may help prevent cerebrovascular pathology. In addition, hypertension may contribute to cognitive decline through its effect on cerebrovascular pathology rather than AD-related pathology. These findings suggest that hypertension is associated with MRI markers of vascular pathology in the absence of a significant decline in cognitive functions.
  •  
4.
  •  
5.
  • Fatima, Tahzeeb, et al. (författare)
  • Association between serum urate and CSF markers of Alzheimer's disease pathology in a population-based sample of 70-year-olds
  • 2021
  • Ingår i: Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring. - : Wiley. - 2352-8729. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: The relationship between urate and biomarkers for Alzheimer's disease (AD) pathophysiology has not been investigated. Methods: We examined whether serum concentration of urate was associated with cerebrospinal fluid biomarkers, amyloid beta (A beta)(42), A beta(40), phosphorylated tau (p-tau), total tau (t-tau), neurofilament light (NfL), and A beta(42)/A beta(40) ratio, in cognitively unimpaired 70-year-old individuals from Gothenburg, Sweden. We also evaluated whether possible associations were modulated by the apolipoprotein E (APOE) epsilon 4 allele. Results: Serum urate was positively associated with A beta(42) in males (beta = 0.55 pg/mL, P = .04). There was a positive urate-APOE epsilon 4 interaction (1.24 pg/mL, P-interaction = .02) in relation to A beta(42) association. The positive urate and A beta(42) association strengthened in male APOE epsilon 4 carriers (beta = 1.28 pg/mL, P = .01). Discussion: The positive association between urate and A beta(42) in cognitively healthy men may suggest a protective effect of urate against deposition of amyloid protein in the brain parenchyma, and in the longer term, maybe against AD dementia.
  •  
6.
  • Jansen, Iris E, et al. (författare)
  • Genome-wide meta-analysis for Alzheimer's disease cerebrospinal fluid biomarkers.
  • 2022
  • Ingår i: Acta neuropathologica. - : Springer Science and Business Media LLC. - 1432-0533 .- 0001-6322. ; 144:5, s. 821-842
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid-beta 42 (Aβ42) and phosphorylated tau (pTau) levels in cerebrospinal fluid (CSF) reflect core features of the pathogenesis of Alzheimer's disease (AD) more directly than clinical diagnosis. Initiated by the European Alzheimer & Dementia Biobank (EADB), the largest collaborative effort on genetics underlying CSF biomarkers was established, including 31 cohorts with a total of 13,116 individuals (discovery n=8074; replication n=5042 individuals). Besides the APOE locus, novel associations with two other well-established AD risk loci were observed; CR1 was shown a locus for Aβ42 and BIN1 for pTau. GMNC and C16orf95 were further identified as loci for pTau, of which the latter is novel. Clustering methods exploring the influence of all known AD risk loci on the CSF protein levels, revealed 4 biological categories suggesting multiple Aβ42 and pTau related biological pathways involved in the etiology of AD. In functional follow-up analyses, GMNC and C16orf95 both associated with lateral ventricular volume, implying an overlap in genetic etiology for tau levels and brain ventricular volume.
  •  
7.
  • Jansen, Willemijn J, et al. (författare)
  • Prevalence Estimates of Amyloid Abnormality Across the Alzheimer Disease Clinical Spectrum.
  • 2022
  • Ingår i: JAMA neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 79:3, s. 228-243
  • Tidskriftsartikel (refereegranskat)abstract
    • One characteristic histopathological event in Alzheimer disease (AD) is cerebral amyloid aggregation, which can be detected by biomarkers in cerebrospinal fluid (CSF) and on positron emission tomography (PET) scans. Prevalence estimates of amyloid pathology are important for health care planning and clinical trial design.To estimate the prevalence of amyloid abnormality in persons with normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia and to examine the potential implications of cutoff methods, biomarker modality (CSF or PET), age, sex, APOE genotype, educational level, geographical region, and dementia severity for these estimates.This cross-sectional, individual-participant pooled study included participants from 85 Amyloid Biomarker Study cohorts. Data collection was performed from January 1, 2013, to December 31, 2020. Participants had normal cognition, subjective cognitive decline, mild cognitive impairment, or clinical AD dementia. Normal cognition and subjective cognitive decline were defined by normal scores on cognitive tests, with the presence of cognitive complaints defining subjective cognitive decline. Mild cognitive impairment and clinical AD dementia were diagnosed according to published criteria.Alzheimer disease biomarkers detected on PET or in CSF.Amyloid measurements were dichotomized as normal or abnormal using cohort-provided cutoffs for CSF or PET or by visual reading for PET. Adjusted data-driven cutoffs for abnormal amyloid were calculated using gaussian mixture modeling. Prevalence of amyloid abnormality was estimated according to age, sex, cognitive status, biomarker modality, APOE carrier status, educational level, geographical location, and dementia severity using generalized estimating equations.Among the 19097 participants (mean [SD] age, 69.1 [9.8] years; 10148 women [53.1%]) included, 10139 (53.1%) underwent an amyloid PET scan and 8958 (46.9%) had an amyloid CSF measurement. Using cohort-provided cutoffs, amyloid abnormality prevalences were similar to 2015 estimates for individuals without dementia and were similar across PET- and CSF-based estimates (24%; 95% CI, 21%-28%) in participants with normal cognition, 27% (95% CI, 21%-33%) in participants with subjective cognitive decline, and 51% (95% CI, 46%-56%) in participants with mild cognitive impairment, whereas for clinical AD dementia the estimates were higher for PET than CSF (87% vs 79%; mean difference, 8%; 95% CI, 0%-16%; P=.04). Gaussian mixture modeling-based cutoffs for amyloid measures on PET scans were similar to cohort-provided cutoffs and were not adjusted. Adjusted CSF cutoffs resulted in a 10% higher amyloid abnormality prevalence than PET-based estimates in persons with normal cognition (mean difference, 9%; 95% CI, 3%-15%; P=.004), subjective cognitive decline (9%; 95% CI, 3%-15%; P=.005), and mild cognitive impairment (10%; 95% CI, 3%-17%; P=.004), whereas the estimates were comparable in persons with clinical AD dementia (mean difference, 4%; 95% CI, -2% to 9%; P=.18).This study found that CSF-based estimates using adjusted data-driven cutoffs were up to 10% higher than PET-based estimates in people without dementia, whereas the results were similar among people with dementia. This finding suggests that preclinical and prodromal AD may be more prevalent than previously estimated, which has important implications for clinical trial recruitment strategies and health care planning policies.
  •  
8.
  • Revelas, M., et al. (författare)
  • High polygenic risk score for exceptional longevity is associated with a healthy metabolic profile
  • 2023
  • Ingår i: Geroscience. - : Springer Science and Business Media LLC. - 2509-2715 .- 2509-2723. ; 45:1, s. 399-413
  • Tidskriftsartikel (refereegranskat)abstract
    • Healthy metabolic measures in humans are associated with longevity. Dysregulation leads to metabolic syndrome (MetS) and negative health outcomes. Recent exceptional longevity (EL) genome wide association studies have facilitated estimation of an individual's polygenic risk score (PRS) for EL. We tested the hypothesis that individuals with high ELPRS have a low prevalence of MetS. Participants were from five cohorts of middle-aged to older adults. The primary analyses were performed in the UK Biobank (UKBB) (n = 407,800, 40-69 years). Replication analyses were undertaken using three Australian studies: Hunter Community Study (n = 2122, 55-85 years), Older Australian Twins Study (n = 539, 65-90 years) and Sydney Memory and Ageing Study (n = 925, 70-90 years), as well as the Swedish Gothenburg H70 Birth Cohort Studies (n = 2273, 70-93 years). MetS was defined using established criteria. Regressions and meta-analyses were performed with the ELPRS and MetS and its components. Generally, MetS prevalence (22-30%) was higher in the older cohorts. In the UKBB, high EL polygenic risk was associated with lower MetS prevalence (OR = 0.94, p = 1.84 x 10(-42)) and its components (p < 2.30 x 10(-8)). Meta-analyses of the replication cohorts showed nominal associations with MetS (p = 0.028) and 3 MetS components (p < 0.05). This work suggests individuals with a high polygenic risk for EL have a healthy metabolic profile promoting longevity.
  •  
9.
  • Vermunt, L., et al. (författare)
  • Duration of preclinical, prodromal, and dementia stages of Alzheimer's disease in relation to age, sex, and APOE genotype
  • 2019
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 15:7, s. 888-898
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: We estimated the age-specific duration of the preclinical, prodromal, and dementia stages of Alzheimer's disease (AD) and the influence of sex, setting, apolipoprotein E (APOE) genotype, and cerebrospinal fluid tau on disease duration. Methods: We performed multistate modeling in a combined sample of 6 cohorts (n = 3268) with death as the end stage and estimated the preclinical, prodromal, and dementia stage duration. Results: The overall AD duration varied between 24 years (age 60) and 15 years (age 80). For individuals presenting with preclinical AD, age 70, the estimated preclinical AD duration was 10 years, prodromal AD 4 years, and dementia 6 years. Male sex, clinical setting, APOE epsilon 4 allele carriership, and abnormal cerebrospinal fluid tau were associated with a shorter duration, and these effects depended on disease stage. Discussion: Estimates of AD disease duration become more accurate if age, sex, setting, APOE, and cerebrospinal fluid tau are taken into account. This will be relevant for clinical practice and trial design. (C) 2019 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy