SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zetterberg Henrik) ;pers:(Lleo A)"

Sökning: WFRF:(Zetterberg Henrik) > Lleo A

  • Resultat 1-10 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Alcolea, D., et al. (författare)
  • Use of plasma biomarkers for AT(N) classification of neurodegenerative dementias
  • 2021
  • Ingår i: Journal of Neurology, Neurosurgery and Psychiatry. - : BMJ. - 0022-3050 .- 1468-330X. ; 92:11, s. 1206-1214
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: All categories included in the AT(N) classification can now be measured in plasma. However, their agreement with cerebrospinal fluid (CSF) markers is not fully established. A blood signature to generate the AT(N) classification would facilitate early diagnosis of patients with Alzheimer's disease (AD) through an easy and minimally invasive approach. Methods: We measured Aβ, pTau181 and neurofilament light (NfL) in 150 plasma samples of the Sant Pau Initiative on Neurodegeneration cohort including patients with mild cognitive impairment, AD dementia, frontotemporal dementia, dementia with Lewy bodies and cognitively normal participants. We classified participants in the AT(N) categories according to CSF biomarkers and studied the diagnostic value of plasma biomarkers within each category individually and in combination. Results: The plasma Aβ composite, pTau181 and NfL yielded areas under the curve (AUC) of 0.75, 0.78 and 0.88 to discriminate positive and negative participants in their respective A, T and N categories. The combination of all three markers did not outperform pTau181 alone (AUC=0.81) to discriminate A+T+ from A-T- participants. There was a moderate correlation between plasma Aβ composite and CSF Aβ1-42/Aβ1-40 (Rho=-0.5, p<0.001) and between plasma pTau181 and CSF pTau181 in the entire cohort (Rho=0.51, p<0.001). NfL levels in plasma showed high correlation with those in CSF (Rho=0.78, p<0.001). Conclusions: Plasma biomarkers are useful to detect the AT(N) categories, and their use can differentiate patients with pathophysiological evidence of AD. A blood AT(N) signature may facilitate early diagnosis and follow-up of patients with AD through an easy and minimally invasive approach. © Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.
  •  
3.
  • Aranha, M. R., et al. (författare)
  • Basal forebrain atrophy along the Alzheimer's disease continuum in adults with Down syndrome
  • 2023
  • Ingår i: Alzheimers & Dementia. - 1552-5260. ; 19:11, s. 4817-4827
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundBasal forebrain (BF) degeneration occurs in Down syndrome (DS)-associated Alzheimer's disease (AD). However, the dynamics of BF atrophy with age and disease progression, its impact on cognition, and its relationship with AD biomarkers have not been studied in DS. MethodsWe included 234 adults with DS (150 asymptomatic, 38 prodromal AD, and 46 AD dementia) and 147 euploid controls. BF volumes were extracted from T-weighted magnetic resonance images using a stereotactic atlas in SPM12. We assessed BF volume changes with age and along the clinical AD continuum and their relationship to cognitive performance, cerebrospinal fluid (CSF) and plasma amyloid/tau/neurodegeneration biomarkers, and hippocampal volume. ResultsIn DS, BF volumes decreased with age and along the clinical AD continuum and significantly correlated with amyloid, tau, and neurofilament light chain changes in CSF and plasma, hippocampal volume, and cognitive performance. DiscussionBF atrophy is a potentially valuable neuroimaging biomarker of AD-related cholinergic neurodegeneration in DS.
  •  
4.
  • Bejanin, A., et al. (författare)
  • Association of Apolipoprotein e ϵ4 Allele with Clinical and Multimodal Biomarker Changes of Alzheimer Disease in Adults with down Syndrome
  • 2021
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149. ; 78:8, s. 937-947
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Alzheimer disease (AD) is the leading cause of death in individuals with Down syndrome (DS). Previous studies have suggested that the APOE ϵ4 allele plays a role in the risk and age at onset of dementia in DS; however, data on in vivo biomarkers remain scarce. Objective: To investigate the association of the APOE ϵ4 allele with clinical and multimodal biomarkers of AD in adults with DS. Design, Setting, and Participants: This dual-center cohort study recruited adults with DS in Barcelona, Spain, and in Cambridge, UK, between June 1, 2009, and February 28, 2020. Included individuals had been genotyped for APOE and had at least 1 clinical or AD biomarker measurement; 2 individuals were excluded because of the absence of trisomy 21. Participants were either APOE ϵ4 allele carriers or noncarriers. Main Outcomes and Measures: Participants underwent a neurological and neuropsychological assessment. A subset of participants had biomarker measurements: Aβ1-42, Aβ1-40, phosphorylated tau 181 (pTau181) and neurofilament light chain (NfL) in cerebrospinal fluid (CSF), pTau181, and NfL in plasma; amyloid positron emission tomography (PET); fluorine 18-labeled-fluorodeoxyglucose PET; and/or magnetic resonance imaging. Age at symptom onset was compared between APOE ϵ4 allele carriers and noncarriers, and within-group local regression models were used to compare the association of biomarkers with age. Voxelwise analyses were performed to assess topographical differences in gray matter metabolism and volume. Results: Of the 464 adults with DS included in the study, 97 (20.9%) were APOE ϵ4 allele carriers and 367 (79.1%) were noncarriers. No differences between the 2 groups were found by age (median [interquartile range], 45.9 [36.4-50.2] years vs 43.7 [34.9-50.2] years; P =.56) or sex (51 male carriers [52.6%] vs 199 male noncarriers [54.2%]). APOE ϵ4 allele carriers compared with noncarriers presented with AD symptoms at a younger age (mean [SD] age, 50.7 [4.4] years vs 52.7 [5.8] years; P =.02) and showed earlier cognitive decline. Locally estimated scatterplot smoothing curves further showed between-group differences in biomarker trajectories with age as reflected by nonoverlapping CIs. Specifically, carriers showed lower levels of the CSF Aβ1-42 to Aβ1-40 ratio until age 40 years, earlier increases in amyloid PET and plasma pTau181, and earlier loss of cortical metabolism and hippocampal volume. No differences were found in NfL biomarkers or CSF total tau and pTau181. Voxelwise analyses showed lower metabolism in subcortical and parieto-occipital structures and lower medial temporal volume in APOE ϵ4 allele carriers. Conclusions and Relevance: In this study, the APOE ϵ4 allele was associated with earlier clinical and biomarker changes of AD in DS. These results provide insights into the mechanisms by which APOE increases the risk of AD, emphasizing the importance of APOE genotype for future clinical trials in DS. © 2021 American Medical Association. All rights reserved.
  •  
5.
  • Bos, I., et al. (författare)
  • Cerebrospinal fluid biomarkers of neurodegeneration, synaptic integrity, and astroglial activation across the clinical Alzheimer's disease spectrum
  • 2019
  • Ingår i: Alzheimers & Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 15:5, s. 644-654
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: We investigated relations between amyloid-beta (A beta) status, apolipoprotein E (APOE) e4, and cognition, with cerebrospinal fluid markers of neurogranin (Ng), neurofilament light (NFL), YKL-40, and total tau (T-tau). Methods: We included 770 individuals with normal cognition, mild cognitive impairment, and Alzheimer's disease (AD)-type dementia from the EMIF-AD Multimodal Biomarker Discovery study. We tested the association of Ng, NFL, YKL-40, and T-tau with A beta status (Ab beta- vs. A beta+), clinical diagnosis APOE epsilon 4 carriership, baseline cognition, and change in cognition. Results: Ng and T-tau distinguished between A beta+ from A beta- individuals in each clinical group, whereas NFL and YKL-40 were associated with A beta+ in nondemented individuals only. APOE epsilon 4 carriership did not influence NFL, Ng, and YKL-40 in A beta+ individuals. NFL was the best predictor of cognitive decline in A beta+ individuals across the cognitive spectrum. Discussion: Axonal degeneration, synaptic dysfunction, astroglial activation, and altered tau metabolism are involved already in preclinical AD. NFL may be a useful prognostic marker. (C) 2019 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
  •  
6.
  • Bos, I., et al. (författare)
  • The EMIF-AD Multimodal Biomarker Discovery study: design, methods and cohort characteristics
  • 2018
  • Ingår i: Alzheimers Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There is an urgent need for novel, noninvasive biomarkers to diagnose Alzheimer's disease (AD) in the predementia stages and to predict the rate of decline. Therefore, we set up the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study. In this report we describe the design of the study, the methods used and the characteristics of the participants. Methods: Participants were selected from existing prospective multicenter and single-center European studies. Inclusion criteria were having normal cognition (NC) or a diagnosis of mild cognitive impairment (MCI) or AD-type dementia at baseline, age above 50 years, known amyloid-beta (A beta) status, availability of cognitive test results and at least two of the following materials: plasma, DNA, magnetic resonance imaging (MRI) or cerebrospinal fluid (CSF). Targeted and untargeted metabolomic and proteomic analyses were performed in plasma, and targeted and untargeted proteomics were performed in CSF. Genome-wide SNP genotyping, next-generation sequencing and methylation profiling were conducted in DNA. Visual rating and volumetric measures were assessed on MRI. Baseline characteristics were analyzed using ANOVA or chi-square, rate of decline analyzed by linear mixed modeling. Results: We included 1221 individuals (NC n = 492, MCI n = 527, AD-type dementia n = 202) with a mean age of 67.9 (SD 8.3) years. The percentage A beta+ was 26% in the NC, 58% in the MCI, and 87% in the AD-type dementia groups. Plasma samples were available for 1189 (97%) subjects, DNA samples for 929 (76%) subjects, MRI scans for 862 (71%) subjects and CSF samples for 767 (63%) subjects. For 759 (62%) individuals, clinical follow-up data were available. In each diagnostic group, the APOE e4 allele was more frequent amongst A beta+ individuals (p < 0.001). Only in MCI was there a difference in baseline Mini Mental State Examination (MMSE) score between the A groups (p< 0.001). A beta+ had a faster rate of decline on the MMSE during follow-up in the NC (p < 0.001) and MCI (p < 0.001) groups. Conclusions: The characteristics of this large cohort of elderly subjects at various cognitive stages confirm the central roles of A beta and APOE epsilon 4 in AD pathogenesis. The results of the multimodal analyses will provide new insights into underlying mechanisms and facilitate the discovery of new diagnostic and prognostic AD biomarkers. All researchers can apply for access to the EMIF-AD MBD data by submitting a research proposal via the EMIF-AD Catalog.
  •  
7.
  •  
8.
  • de Rojas, I., et al. (författare)
  • Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic discoveries of Alzheimer’s disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer’s disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer’s disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer’s disease. © 2021, The Author(s).
  •  
9.
  • del Campo, M., et al. (författare)
  • New developments of biofluid-based biomarkers for routine diagnosis and disease trajectories in frontotemporal dementia
  • 2022
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:11, s. 2292-2307
  • Tidskriftsartikel (refereegranskat)abstract
    • Frontotemporal dementia (FTD) covers a spectrum of neurodegenerative disorders with different phenotypes, genetic backgrounds, and pathological states. Its clinicopathological diversity challenges the diagnostic process and the execution of clinical trials, calling for specific diagnostic biomarkers of pathologic FTD types. There is also a need for biomarkers that facilitate disease staging, quantification of severity, monitoring in clinics and observational studies, and for evaluation of target engagement and treatment response in clinical trials. This review discusses current FTD biofluid-based biomarker knowledge taking into account the differing applications. The limitations, knowledge gaps, and challenges for the development and implementation of such markers are also examined. Strategies to overcome these hurdles are proposed, including the technologies available, patient cohorts, and collaborative research initiatives. Access to robust and reliable biomarkers that define the exact underlying pathophysiological FTD process will meet the needs for specific diagnosis, disease quantitation, clinical monitoring, and treatment development. © 2022 The Authors. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association
  •  
10.
  • Delaby, C., et al. (författare)
  • Blood amyloid and tau biomarkers as predictors of cerebrospinal fluid profiles
  • 2022
  • Ingår i: Journal of Neural Transmission. - : Springer Science and Business Media LLC. - 0300-9564 .- 1435-1463. ; 129
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Blood biomarkers represent a major advance for improving the management, diagnosis, and monitoring of Alzheimer's disease (AD). However, their context of use in relation to routine cerebrospinal fluid (CSF) analysis for the quantification of amyloid peptides and tau proteins remains to be determined. Methods We studied in two independent cohorts, the performance of blood biomarkers in detecting "nonpathological" (A-/T-/N-), amyloid (A+) or neurodegenerative (T+ /N+) CSF profiles. Results Plasma A beta(1-42)/A beta(1-40) ratio and phosphorylated tau (p-tau(181)) were independent and complementary predictors of the different CSF profile and in particular of the nonpathological (A-/T-/N-) profile with a sensitivity and specificity close to 85%. These performances and the corresponding biomarker thresholds were significantly different from those related to AD detection. Conclusion The use of blood biomarkers to identify patients who may benefit from secondary CSF testing represents an attractive stratification strategy in the clinical management of patients visiting memory clinics. This could reduce the need for lumbar puncture and foreshadow the use of blood testing on larger populations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 30

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy