SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang H) ;lar1:(ltu)"

Sökning: WFRF:(Zhang H) > Luleå tekniska universitet

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Milz, Mathias, et al. (författare)
  • Validation of water vapour profiles (version 13) retrieved by the IMK/IAA scientific retrieval processor based on full resolution spectra measured by MIPAS on board Envisat
  • 2009
  • Ingår i: Atmospheric Measurement Techniques. - : Copernicus GmbH. - 1867-1381 .- 1867-8548. ; 2:2, s. 379-399
  • Tidskriftsartikel (refereegranskat)abstract
    • Vertical profiles of stratospheric water vapour measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) with the full resolution mode between September 2002 and March 2004 and retrieved with the IMK/IAA scientific retrieval processor were compared to a number of independent measurements in order to estimate the bias and to validate the existing precision estimates of the MIPAS data. The estimated precision for MIPAS is 5 to 10% in the stratosphere, depending on altitude, latitude, and season. The independent instruments were: the Halogen Occultation Experiment (HALOE), the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), the Improved Limb Atmospheric Spectrometer-II (ILAS-II), the Polar Ozone and Aerosol Measurement (POAM III) instrument, the Middle Atmospheric Water Vapour Radiometer (MIAWARA), the Michelson Interferometer for Passive Atmospheric Sounding, balloon-borne version (MIPAS-B), the Airborne Microwave Stratospheric Observing System(AMSOS), the Fluorescent Stratospheric Hygrometer for Balloon (FLASH-B), the NOAA frostpoint hygrometer, and the Fast In Situ Hygrometer (FISH). For the in-situ measurements and the ground based, air- and balloon borne remote sensing instruments, the measurements are restricted to central and northern Europe. The comparisons to satellite-borne instruments are predominantly at mid- to high latitudes on both hemispheres. In the stratosphere there is no clear indicationof a bias in MIPAS data, because the independent measurements in some cases are drier and in some cases are moister than the MIPAS measurements. Compared to the infrared measurements of MIPAS, measurements in the ultraviolet and visible have a tendency to be high, whereas microwave measurements have a tendency to be low. Theresults of chi2-based precision validation are somewhat controversial among the comparison estimates. However, for comparison instruments whose error budget also includes errors due to uncertainties in spectrally interfering species and where good coincidences were found, the chi2 values found are in the expected range or even below. This suggests that there is no evidence of systematically underestimated MIPAS random errors.
  •  
3.
  • Lethuillier, A., et al. (författare)
  • Cometary dust analogues for physics experiments
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 515:3, s. 3420-3438
  • Tidskriftsartikel (refereegranskat)abstract
    • The CoPhyLab (Cometary Physics Laboratory) project is designed to study the physics of comets through a series of earth-based experiments. For these experiments, a dust analogue was created with physical properties comparable to those of the non-volatile dust found on comets. This ‘CoPhyLab dust’ is planned to be mixed with water and CO2 ice and placed under cometary conditions in vacuum chambers to study the physical processes taking place on the nuclei of comets. In order to develop this dust analogue, we mixed two components representative for the non-volatile materials present in cometary nuclei. We chose silica dust as a representative for the mineral phase and charcoal for the organic phase, which also acts as a darkening agent. In this paper, we provide an overview of known cometary analogues before presenting measurements of eight physical properties of different mixtures of the two materials and a comparison of these measurements with known cometary values. The physical properties of interest are particle size, density, gas permeability, spectrophotometry, and mechanical, thermal, and electrical properties. We found that the analogue dust that matches the highest number of physical properties of cometary materials consists of a mixture of either 60 per cent/40 per cent or 70 per cent/30 per cent of silica dust/charcoal by mass. These best-fit dust analogue will be used in future CoPhyLab experiments.
  •  
4.
  • Steck, T., et al. (författare)
  • Bias determination and precision validation of ozone profiles from MIPAS-Envisat retrieved with the IMK-IAA processor
  • 2007
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 7:13, s. 3639-3662
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper characterizes vertical ozone profiles retrieved with the IMK-IAA (Institute for Meteorology and Climate Research, Karlsruhe – Instituto de Astrofisica de Andalucia) science-oriented processor from high spectral resolution data (until March 2004) measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the environmental satellite Envisat. Bias determination and precision validation is performed on the basis of correlative measurements by ground-based lidars, Fourier transform infrared spectrometers, and microwave radiometers as well as balloon-borne ozonesondes, the balloon-borne version of MIPAS, and two satellite instruments (Halogen Occultation Experiment and Polar Ozone and Aerosol Measurement III). Percentage mean differences between MIPAS and the comparison instruments for stratospheric ozone are generally within ±10%. The precision in this altitude region is estimated at values between 5 and 10% which gives an accuracy of 15 to 20%. Below 18 km, the spread of the percentage mean differences is larger and the precision degrades to values of more than 20% depending on altitude and latitude. The main reason for the degraded precision at low altitudes is attributed to undetected thin clouds which affect MIPAS retrievals, and to the influence of uncertainties in the water vapor concentration.
  •  
5.
  • Wetzel, G., et al. (författare)
  • Validation of MIPAS-ENVISAT H2O operational data collected between July 2002 and March 2004
  • 2013
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:11, s. 5791-5811
  • Tidskriftsartikel (refereegranskat)abstract
    • Water vapour (H2O) is one of the operationally retrieved key species of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument aboard the Environmental Satellite (ENVISAT) which was launched into its sun-synchronous orbit on 1 March 2002 and operated until April 2012. Within the MIPAS validation activities, independent observations from balloons, aircraft, satellites, and ground-based stations have been compared to European Space Agency (ESA) version 4.61 operational H2O data comprising the time period from July 2002 until March 2004 where MIPAS measured with full spectral resolution. No significant bias in the MIPAS H2O data is seen in the lower stratosphere (above the hygropause) between about 15 and 30 km. Differences of H2O quantities observed by MIPAS and the validation instruments are mostly well within the combined total errors in this altitude region. In the upper stratosphere (above about 30 km), a tendency towards a small positive bias (up to about 10 %) is present in the MIPAS data when compared to its balloon-borne counterpart MIPAS-B, to the satellite instruments HALOE (Halogen Occultation Experiment) and ACE-FTS (Atmospheric Chemistry Experiment, Fourier Transform Spectrometer), and to the millimeter-wave airborne sensor AMSOS (Airborne Microwave Stratospheric Observing System). In the mesosphere the situation is unclear due to the occurrence of different biases when comparing HALOE and ACE-FTS data. Pronounced deviations between MIPAS and the correlative instruments occur in the lowermost stratosphere and upper troposphere, a region where retrievals of H2O are most challenging. Altogether it can be concluded that MIPAS H2O profiles yield valuable information on the vertical distribution of H2O in the stratosphere with an overall accuracy of about 10 to 30% and a precision of typically 5 to 15% - well within the predicted error budget, showing that these global and continuous data are very valuable for scientific studies. However, in the region around the tropopause retrieved MIPAS H2O profiles are less reliable, suffering from a number of obstacles such as retrieval boundary and cloud effects, sharp vertical discontinuities, and frequent horizontal gradients in both temperature and H2O volume mixing ratio (VMR). Some profiles are characterized by retrieval instabilities.
  •  
6.
  •  
7.
  • Young, D., et al. (författare)
  • The A2b adenosine receptor protects against inflammation and excessive vascular adhesion
  • 2006
  • Ingår i: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 116:7, s. 1913-1923
  • Tidskriftsartikel (refereegranskat)abstract
    • Adenosine has been described as playing a role in the control of inflammation, but it has not been certain which of its receptors mediate this effect. Here, we generated an A2B adenosine receptor-knockout/reporter gene-knock-in (A2BAR-knockout/reporter gene-knock-in) mouse model and showed receptor gene expression in the vasculature and macrophages, the ablation of which causes low-grade inflammation compared with age-, sex-, and strain-matched control mice. Augmentation of proinflammatory cytokines, such as TNF-alpha, and a consequent downregulation of IkappaB-alpha are the underlying mechanisms for an observed upregulation of adhesion molecules in the vasculature of these A2BAR-null mice. Intriguingly, leukocyte adhesion to the vasculature is significantly increased in the A2BAR-knockout mice. Exposure to an endotoxin results in augmented proinflammatory cytokine levels in A2BAR-null mice compared with control mice. Bone marrow transplantations indicated that bone marrow (and to a lesser extent vascular) A2BARs regulate these processes. Hence, we identify the A2BAR as a new critical regulator of inflammation and vascular adhesion primarily via signals from hematopoietic cells to the vasculature, focusing attention on the receptor as a therapeutic target
  •  
8.
  • Bader, Alexander, et al. (författare)
  • Proton Temperature Anisotropies in the Plasma Environment of Venus
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 124:5, s. 3312-3330
  • Tidskriftsartikel (refereegranskat)abstract
    • Velocity distribution functions (VDFs) are a key to understanding the interplay between particles and waves in a plasma. Any deviation from an isotropic Maxwellian distribution may be unstable and result in wave generation. Using data from the ion mass spectrometer IMA (Ion Mass Analyzer) and the magnetometer (MAG) onboard Venus Express, we study proton distributions in the plasma environment of Venus. We focus on the temperature anisotropy, that is, the ratio between the proton temperature perpendicular (T-perpendicular to) and parallel (T-parallel to) to the background magnetic field. We calculate average values of T-perpendicular to and T-parallel to for different spatial areas around Venus. In addition we present spatial maps of the average of the two temperatures and of their average ratio. Our results show that the proton distributions in the solar wind are quite isotropic, while at the bow shock stronger perpendicular than parallel heating makes the downstream VDFs slightly anisotropic (T-perpendicular to/T-parallel to > 1) and possibly unstable to generation of proton cyclotron waves or mirror mode waves. Both wave modes have previously been observed in Venus's magnetosheath. The perpendicular heating is strongest in the near-subsolar magnetosheath (T-perpendicular to/ T-parallel to approximate to 3/2), which is also where mirror mode waves are most frequently observed. We believe that the mirror mode waves observed here are indeed generated by the anisotropy. In the magnetotail we observe planetary protons with largely isotropic VDFs, originating from Venus's ionosphere.
  •  
9.
  • Botelho, Anneliese H., et al. (författare)
  • Effects of parallel fractures near a free surface on velocity amplification of S-wave
  • 2017
  • Ingår i: Proceedings of the Ninth International Symposium on Rockbursts and Seismicity in Mines. - Santiago do Chile : University of Chile.
  • Konferensbidrag (refereegranskat)abstract
    • When rock support is designed in a seismically active underground mine, it is important tochoose the right ejection velocity and calculate corresponding kinetic energy. Field monitoringand back-analyses have shown that ejection velocity of the order of 10 m/s and higher can resultfrom seismic events of moderate magnitude. Such velocities are much higher than those predictedusing peak particle velocity (PPV) obtained from scaling laws. Many researches have reportedthe amplification of particle velocity near excavation surface. Velocity amplification of P-wavetravelling through fractured rock near a free surface was recently studied. The amplification ofseismic waves on the skin of excavation is of interest in case of large seismic events. Seismic eventswith large magnitude are often associated with slip along weaknesses or shear fracturing of intactrock, which according to observations radiate much stronger S-wave as compared to P-wave.In this paper, velocity amplification of S-wave was investigated by modelling the dynamicinteraction between fractured rock and a free surface using a 2D discontinuum-based numericalprogram, UDEC (Universal Distinct Element Code). A 1D model with a fractured zone wasused to represent the fractured rock in this investigation. It is found that the shear stress ratio,wave frequency, fracture stifness, fracture spacing and thickness of fractured zone afect thevelocity amplification, in which the shear stress ratio is the most crucial factor influencing wavetransmission. The results have proved that the interaction of the seismic wave and multiplefractures near the free surface strongly influences the ground motion.
  •  
10.
  • Botelho, Anneliese H., et al. (författare)
  • Velocity amplification of obliquely incident s-wave through fractures near free-surface
  • 2019
  • Ingår i: Rock Mechanics for Natural Resources and Infrastructure Development - Full Papers. - : Taylor & Francis. ; , s. 1487-1494
  • Konferensbidrag (refereegranskat)abstract
    • The rockfall risk due to mining-induced seismicity reduces by installing appropriate rock support to absorb the kinetic energy from a seismic event, which is calculated by assuming the mass of ejected rock and its ejection velocity. Estimation of ejection velocity is normally based on scaling laws that do not consider the effect of the excavation free-surface and existing fractures near the excavation free-surface. Field monitoring studies have shown that the peak particle velocity on the free-surface can be much larger than the velocity in deep solid rock. The interaction between the fractures and the free-surface under incident S-wave is investigated by using a two-dimensional UDEC model with fractured zone characterized as one, two, three and four sets of parallel fractures with varied intersecting angles. The results show that wave amplification factor varies according to the incident wave angle, the number of fracture sets and fracture spacing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy