SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Hong Wei) ;lar1:(su)"

Sökning: WFRF:(Zhang Hong Wei) > Stockholms universitet

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Luo, Zhong-Zhen, et al. (författare)
  • PbGa2MSe6 (M = Si, Ge) : Two Exceptional Infrared Nonlinear Optical Crystals
  • 2015
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 27:3, s. 914-922
  • Tidskriftsartikel (refereegranskat)abstract
    • Two noncentrosymmetric (NCS) quaternary selenides, PbGa2SiSe6 (1) and PbGa2GeSe6 (2), with second-order nonlinear optical (NLO) responses, were synthesized by a conventional high-temperature solid-state reaction method. Compounds 1 and 2 are constructed by three NCS chromophores, [PbSe4], [GaSe4], and [Ga/SiSe4] or [Ga/GeSe4], with the covalent interactions between the X and Se atoms (X = Pb, Ga, Ga/Si, or Ga/Ge). They crystallize in the polar space groups Cc and Fdd2, respectively. Inspiringly, compound 2 is phase-matchable (PM) and shows high laser-induced damage threshold (LIDT) of 3.7 x AgGaS2 and wide transparent region (0.6325 mu m) in the mid-infrared (MIR) region. Most importantly, it presents extraordinary strong second harmonic generation (SHG) at 2.05 mu m radiation of about 12 x AgGaS2 at the particle size of 2545 mu m, which represents the strongest SHG among PM chalcogenides to date. The calculated major SHG tensor elements of compounds 1 and 2 are d31 = 224.7 and d12 = 222.1 pm/V, respectively, while the calculated d36 of AgGaS2 is only 21.2 pm/V.
  •  
5.
  • Qian, Li-Bing, et al. (författare)
  • Transmission of electrons through the conical glass capillary with the grounded conducting outer surface
  • 2017
  • Ingår i: Wuli xuebao. - : Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences. - 1000-3290. ; 66:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The transmission of 1.5 keV-electrons through a conical glass capillary is reported. This study aims to understand the so-called guiding effect for the negatively charged particles (e.g. electrons). The guiding mechanism is understood quite well with positively charged particles in particular highly charged ions, but not clear with electrons, i. e., even the basic scheme mediated by the existence of negative charge patches to guide the electrons is still somewhat controversial.. The study of the charging-up dynamics causing the electrons transport inside the capillary will shed light on this issue. In order to perform this, a data acquisition system has been setup to follow the time evolution of the two-dimensional angular distribution of the transmitted electrons. The electrons are detected by the multi-channel plate (MCP) detector with a phosphor screen. The image from the phosphor screen is recorded by a charge-coupled device camera. The timing signals for the detected events are extracted from the back stack of the MCP detector and recorded by the data acquisition system, synchronized with the acquired images. The electron beam has a size of 0.5 mm x 0.5 mm and a divergence of less than 0.35.. The inner diameter of the straight part of the capillary is 1.2 mm and the exit diameter is 225 mu m. A small conducting aperture of 0.3 mm in diameter is placed at the entrance of the capillary. Two-dimensional angular distribution of the transmitted electrons through conical glass capillary and its time evolution are measured. The results show that the transmission rate decreases and reaches to a constant value for the completely discharged glass capillary with time going by. The centroid of the angular distribution moves to an asymptotic value while the width remains unchanged. These transmission characteristics are different from those indicated in our previous work (2016 Acta Phys: Si n: 65 204103). The difference originates from the different manipulations of the capillary outer surface. A conducting layer is coated on the outer surface of the capillary and grounded in this work. This isolates various discharge/charge channels and forms a new stable discharge channel. The transmission rate as a function of the tilt angle shows that the allowed transmission occurs at the tilt angle limited by the geometrical factors, i. e., the geometrical opening angle given by the aspect ratio as well as the beam divergence. The transmission characteristics suggest that most likely there are formed no negative patches to facilitate the electron transmission through the glass capillary at this selected beam energy. It is different from that of highly charged ions, where the formation of the charge patches prohibits the close collisions between the following ions and guides them out of the capillary.
  •  
6.
  • Schweinsberg, Martin, et al. (författare)
  • Same data, different conclusions : Radical dispersion in empirical results when independent analysts operationalize and test the same hypothesis
  • 2021
  • Ingår i: Organizational Behavior and Human Decision Processes. - : Elsevier BV. - 0749-5978 .- 1095-9920. ; 165, s. 228-249
  • Tidskriftsartikel (refereegranskat)abstract
    • In this crowdsourced initiative, independent analysts used the same dataset to test two hypotheses regarding the effects of scientists' gender and professional status on verbosity during group meetings. Not only the analytic approach but also the operationalizations of key variables were left unconstrained and up to individual analysts. For instance, analysts could choose to operationalize status as job title, institutional ranking, citation counts, or some combination. To maximize transparency regarding the process by which analytic choices are made, the analysts used a platform we developed called DataExplained to justify both preferred and rejected analytic paths in real time. Analyses lacking sufficient detail, reproducible code, or with statistical errors were excluded, resulting in 29 analyses in the final sample. Researchers reported radically different analyses and dispersed empirical outcomes, in a number of cases obtaining significant effects in opposite directions for the same research question. A Boba multiverse analysis demonstrates that decisions about how to operationalize variables explain variability in outcomes above and beyond statistical choices (e.g., covariates). Subjective researcher decisions play a critical role in driving the reported empirical results, underscoring the need for open data, systematic robustness checks, and transparency regarding both analytic paths taken and not taken. Implications for orga-nizations and leaders, whose decision making relies in part on scientific findings, consulting reports, and internal analyses by data scientists, are discussed.
  •  
7.
  • Zhang, Weiyi, et al. (författare)
  • Poly(Ionic Liquid)-Derived Graphitic Nanoporous Carbon Membrane Enables Superior Supercapacitive Energy Storage
  • 2019
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 13:9, s. 10261-10271
  • Tidskriftsartikel (refereegranskat)abstract
    • High energy/power density, capacitance, and long-life cycles are urgently demanded for energy storage electrodes. Porous carbons as benchmark commercial electrode materials are underscored by their (electro)chemical stability and wide accessibility, yet are often constrained by moderate performances associated with their powdery status. Here via controlled vacuum pyrolysis of a poly(ionic liquid) membrane template, advantageous features including good conductivity (132 S cm(-1) at 298 K), interconnected hierarchical pores, large specific surface area (1501 m(2) g(-1)), and heteroatom doping are realized in a single carbon membrane electrode. The structure synergy at multiple length scales enables large areal capacitances both for a basic aqueous electrolyte (3.1 F cm(-2)) and for a symmetric all-solid-state supercapacitor (1.0 F cm(-2)), together with superior energy densities (1.72 and 0.14 mW h cm(-2), respectively) without employing a current collector. In addition, theoretical calculations verify a synergistic heteroatom co-doping effect beneficial to the supercapacitive performance. This membrane electrode is scalable and compatible for device fabrication, highlighting the great promise of a poly(ionic liquid) for designing graphitic nanoporous carbon membranes in advanced energy storage.
  •  
8.
  • Cai, Jing, et al. (författare)
  • Size-segregated particle number and mass concentrations from different emission sources in urban Beijing
  • 2020
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 20:21, s. 12721-12740
  • Tidskriftsartikel (refereegranskat)abstract
    • Although secondary particulate matter is reported to be the main contributor of PM2.5 during haze in Chinese megacities, primary particle emissions also affect particle concentrations. In order to improve estimates of the contribution of primary sources to the particle number and mass concentrations, we performed source apportionment analyses using both chemical fingerprints and particle size distributions measured at the same site in urban Beijing from April to July 2018. Both methods resolved factors related to primary emissions, including vehicular emissions and cooking emissions, which together make up 76% and 24% of total particle number and organic aerosol (OA) mass, respectively. Similar source types, including particles related to vehicular emissions (1.6 +/- 1.1 mu gm(-3); 2.4 +/- 1.8 x 10(3) cm(-3) and 5.5 +/- 2.8 x 10(3) cm(-3) for two traffic-related components), cooking emissions (2.6 +/- 1.9 mu gm(-3) and 5.5 +/- 3.3 x 10(3) cm(-3)) and secondary aerosols (51 +/- 41 mu gm(-3) and 4.2 +/- 3.0 x 10(3) cm(-3)), were resolved by both methods. Converted mass concentrations from particle size distributions components were comparable with those from chemical fingerprints. Size distribution source apportionment separated vehicular emissions into a component with a mode diameter of 20 nm (traffic-ultrafine) and a component with a mode diameter of 100 nm (traffic-fine). Consistent with similar day- and nighttime diesel vehicle PM2.5 emissions estimated for the Beijing area, traffic-fine particles, hydrocarbon-like OA (HOA, traffic-related factor resulting from source apportionment using chemical fingerprints) and black carbon (BC) showed similar diurnal patterns, with higher concentrations during the night and morning than during the afternoon when the boundary layer is higher. Traffic-ultrafine particles showed the highest concentrations during the rush-hour period, suggesting a prominent role of local gasoline vehicle emissions. In the absence of new particle formation, our re-sults show that vehicular-related emissions (14% and 30% for ultrafine and fine particles, respectively) and cooking-activity-related emissions (32 %) dominate the particle number concentration, while secondary particulate matter (over 80 %) governs PM2.5 mass during the non-heating season in Beijing.
  •  
9.
  • Li, Jian, et al. (författare)
  • A 3D extra-large-pore zeolite enabled by 1D-to-3D topotactic condensation of a chain silicate
  • 2023
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 379:6629, s. 283-287
  • Tidskriftsartikel (refereegranskat)abstract
    • Zeolites are microporous silicates with a large variety of applications as catalysts, adsorbents, and cation exchangers. Stable silica-based zeolites with increased porosity are in demand to allow adsorption and processing of large molecules but challenge our synthetic ability. We report a new, highly stable pure silica zeolite called ZEO-3, which has a multidimensional, interconnected system of extra-large pores open through windows made by 16 and 14 silicate tetrahedra, the least dense polymorph of silica known so far. This zeolite was formed by an unprecedented one-dimensional to three-dimensional (1D-to-3D) topotactic condensation of a chain silicate. With a specific surface area of more than 1000 square meters per gram, ZEO-3 showed a high performance for volatile organic compound abatement and recovery compared with other zeolites and metal-organic frameworks.
  •  
10.
  • Wang, Hong, et al. (författare)
  • Ambient Electrosynthesis of Ammonia : Electrode Porosity and Composition Engineering
  • 2018
  • Ingår i: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 57:38, s. 12360-12364
  • Tidskriftsartikel (refereegranskat)abstract
    • Ammonia, a key precursor for fertilizer production, convenient hydrogen carrier, and emerging clean fuel, plays a pivotal role in sustaining life on Earth. Currently, the main route for NH3 synthesis is by the heterogeneous catalytic Haber-Bosch process (N-2+ 3H(2) -> 2NH(3)), which proceeds under extreme conditions of temperature and pressure with a very large carbon footprint. Herein we report that a pristine nitrogen-doped nanoporous graphitic carbon membrane (NCM) can electrochemically convert N-2 into NH3 in an acidic aqueous solution under ambient conditions. The Faradaic efficiency and rate of production of NH3 on the NCM electrode reach 5.2% and 0.08 gm(-2) h(-1), respectively. Functionalization of the NCM with Au nanoparticles dramatically enhances these performance metrics to 22% and 0.36 gm(-2) h(-1), respectively. As this system offers the potential to be scaled to industrial levels it is highly likely that it might displace the century-old Haber-Bosch process.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy