SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Qiang) ;pers:(Li Bo)"

Sökning: WFRF:(Zhang Qiang) > Li Bo

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kristanl, Matej, et al. (författare)
  • The Seventh Visual Object Tracking VOT2019 Challenge Results
  • 2019
  • Ingår i: 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW). - : IEEE COMPUTER SOC. - 9781728150239 ; , s. 2206-2241
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative. Results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis as well as the standard VOT methodology for long-term tracking analysis. The VOT2019 challenge was composed of five challenges focusing on different tracking domains: (i) VOT-ST2019 challenge focused on short-term tracking in RGB, (ii) VOT-RT2019 challenge focused on "real-time" short-term tracking in RGB, (iii) VOT-LT2019 focused on long-term tracking namely coping with target disappearance and reappearance. Two new challenges have been introduced: (iv) VOT-RGBT2019 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2019 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019 datasets were refreshed while new datasets were introduced for VOT-RGBT2019 and VOT-RGBD2019. The VOT toolkit has been updated to support both standard short-term, long-term tracking and tracking with multi-channel imagery. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website(1).
  •  
2.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  • Kristan, Matej, et al. (författare)
  • The Sixth Visual Object Tracking VOT2018 Challenge Results
  • 2019
  • Ingår i: Computer Vision – ECCV 2018 Workshops. - Cham : Springer Publishing Company. - 9783030110086 - 9783030110093 ; , s. 3-53
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge VOT2018 is the sixth annual tracker benchmarking activity organized by the VOT initiative. Results of over eighty trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis and a “real-time” experiment simulating a situation where a tracker processes images as if provided by a continuously running sensor. A long-term tracking subchallenge has been introduced to the set of standard VOT sub-challenges. The new subchallenge focuses on long-term tracking properties, namely coping with target disappearance and reappearance. A new dataset has been compiled and a performance evaluation methodology that focuses on long-term tracking capabilities has been adopted. The VOT toolkit has been updated to support both standard short-term and the new long-term tracking subchallenges. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website (http://votchallenge.net).
  •  
4.
  • Gao, Qiang, et al. (författare)
  • Femtosecond-laser electronic-excitation tagging velocimetry using a 267 nm laser
  • 2019
  • Ingår i: Sensors and Actuators, A: Physical. - : Elsevier BV. - 0924-4247. ; 287, s. 138-142
  • Tidskriftsartikel (refereegranskat)abstract
    • Femtosecond (fs)-laser electronic-excitation tagging velocimetry (FLEET) in a nitrogen flow field using a 267 nm laser was performed under the condition of fs-laser filamentation. The filamentous properties and their effects on velocity measurements were investigated and were compared with those of an 800 nm fs-laser. The results show that the required energy of the 267 nm laser pulse is as low as hundreds of μJ, and this is beneficial for reducing the potential perturbations to the flow flied. The filaments induced by the 267 nm laser are longer and thinner than are those induced by the 800 nm laser, which enlarges the velocity measurements region, and a precision of 1.3% was achieved.
  •  
5.
  • Han, Lei, et al. (författare)
  • Deep Neural Network-Based Generation of Planar CH Distribution through Flame Chemiluminescence in Premixed Turbulent Flame
  • 2023
  • Ingår i: Energy and AI. - : Elsevier BV. - 2666-5468. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Flame front structure is one of the most fundamental characteristics and, hence, vital for understanding combustion processes. Measuring flame front structure in turbulent flames usually needs laser-based diagnostic techniques, mostly planar laser-induced fluorescence (PLIF). The equipment of PLIF, burdened with lasers, is often too sophisticated to be configured in harsh environments. Here, to shed the burden, we propose a deep neural network-based method to generate the structures of flame fronts using line-of-sight CH* chemiluminescence that can be obtained without the use of lasers. A conditional generative adversarial network (C-GAN) was trained by simultaneously recording CH-PLIF and chemiluminescence images of turbulent premixed methane/air flames. Two distinct generators of the C-GAN, namely Resnet and U-net, were evaluated. The former net performs better in this study in terms of both generating snap-shot images and statistics over multiple images. For chemiluminescence imaging, the selection of the camera's gate width produces a trade-off between the signal-to-noise (SNR) ratio and the temporal resolution. The trained C-GAN model can generate CH-PLIF images from the chemiluminescence images with an accuracy of over 91% at a Reynolds number of 5000, and the flame surface density at a higher Reynolds number of 10,000 can also be effectively estimated by the model. This new method has the potential to achieve the flame characteristics without the use of laser and significantly simplify the diagnosing system, also with the potential for high-speed flame diagnostics.
  •  
6.
  • Han, Lei, et al. (författare)
  • Simultaneous measurements of velocity and concentration of gas flow using femtosecond laser-induced chemiluminescence
  • 2022
  • Ingår i: Optics and Lasers in Engineering. - : Elsevier BV. - 0143-8166. ; 155
  • Tidskriftsartikel (refereegranskat)abstract
    • The mixing process in a gas flow plays a crucial role in chemical reactions, and simultaneous measurements of both velocity and mixture fraction are desired to fathom the process. Here, we report a scheme for simultaneously measuring both velocity and concentration by femtosecond laser-induced chemiluminescence. The femtosecond laser would induce chemical reactions that generate CN radicals in the B state. The transition of CN (X-B) would emit fluorescence with both strong intensity and long duration, and the decay of the fluorescence versus time showed prominent benefits for the simultaneous measurement. This measurement was accomplished by an ICCD camera worked in the on-chip multi-exposure mode, i.e., the camera had two exposures in succession to capture two luminescent lines on one image. The first line was used to measure the methane concentration and hence, the mixture fraction through a calibration procedure. The second line was the first line displaced by the flow in a known time interval and we demonstrate an algorithm to derive the one dimensional-two components velocity fields from the line shapes of the luminescent lines. The detection limit of the concentration is estimated to be 152 ppm and the minimum measurable velocity is estimated to be 5 m/s.
  •  
7.
  • Han, Lei, et al. (författare)
  • 基于飞秒激光的一维速度场测量方法
  • 2022
  • Ingår i: Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics. - 0253-231X. ; 43:1, s. 267-271
  • Tidskriftsartikel (refereegranskat)abstract
    • Femtosecond laser-induced cyano chemiluminescence uses femtosecond filaments to tag molecules in a flow field, and velocity information of the flow field can be obtained by observing the displacement of the tagged molecules within a known time. The one-dimensional (1D) emitting line contains 1D velocity field information, but only the velocity at the central point can be given because it is unable to precisely correlate the position information before and after the line moves. For this problem, we propose a 1D velocity field inversion algorithm, which can invert the velocity of the whole emitting line according to the displacement of the emitting line and its shape, and finally obtain the 1D-2C velocity field information on the line. By using the moving trajectory of multiple emitting lines we can also obtain the 2D velocity field information.
  •  
8.
  • Li, Bo, et al. (författare)
  • A review of femtosecond laser-induced emission techniques for combustion and flow field diagnostics
  • 2019
  • Ingår i: Applied Sciences (Switzerland). - : MDPI AG. - 2076-3417. ; 9:9
  • Forskningsöversikt (refereegranskat)abstract
    • The applications of femtosecond lasers to the diagnostics of combustion and flow field have recently attracted increasing interest. Many novel spectroscopic methods have been developed in obtaining non-intrusive measurements of temperature, velocity, and species concentrations with unprecedented possibilities. In this paper, several applications of femtosecond-laser-based incoherent techniques in the field of combustion diagnostics were reviewed, including two-photon femtosecond laser-induced fluorescence (fs-TPLIF), femtosecond laser-induced breakdown spectroscopy (fs-LIBS), filament-induced nonlinear spectroscopy (FINS), femtosecond laser-induced plasma spectroscopy (FLIPS), femtosecond laser electronic excitation tagging velocimetry (FLEET), femtosecond laser-induced cyano chemiluminescence (FLICC), and filamentary anemometry using femtosecond laser-extended electric discharge (FALED). Furthermore, prospects of the femtosecond-laser-based combustion diagnostic techniques in the future were analyzed and discussed to provide a reference for the relevant researchers.
  •  
9.
  • Li, Bo, et al. (författare)
  • Comprehensive CO detection in flames using femtosecond two-photon laser-induced fluorescence
  • 2017
  • Ingår i: Optics Express. - 1094-4087. ; 25:21, s. 25809-25818
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate a femtosecond two-photon laser-induced fluorescence (fs-TPLIF) technique for sensitive CO detection, using a 230 nm pulse of 9 µJ and 45 fs. The advantages of fs-TPLIF in excitation of molecular species were analyzed. Spectra of CO fs-TPLIF were recorded in stable laminar flames spatially resolved across the flame front. A hot band (1, n) together with the conventional band (0, n) of the B→A transitions were observed in the burned zone and attributed to the broadband nature of the fs excitation. The CO fs-TPLIF signal recorded across the focal point of the excitation beam shows a relatively flat intensity distribution despite of the steep laser intensity variation, which is beneficial for CO imaging in contrast to nanosecond and picosecond TPLIF. This phenomenon can be explained by photoionization, which over the short pulse duration dominates the population depletion of the excited B state due to the high peak power, but only contributes in total a negligible X state depletion due to the low pulse energy. Single-shot CO fs-TPLIF images in methane/air flames were recorded by imaging the broadband fluorescence. The results indicate that fs-TPLIF is a promising tool for CO imaging in flames.
  •  
10.
  • Li, Bo, et al. (författare)
  • Femtosecond laser-induced cyano chemiluminescence in methane-seeded nitrogen gas flows for near-wall velocimetry
  • 2018
  • Ingår i: Journal of Physics D: Applied Physics. - : IOP Publishing. - 0022-3727 .- 1361-6463. ; 51:29
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate a velocimetric technique based on femtosecond laser-induced cyano (CN) chemiluminescence (FLICC). High intensity emission originated from CN(B-X) fluorescence was observed in filaments generated by focusing a femtosecond laser in methane-seeded nitrogen gas flows. The emission is strong and can last for hundreds of microseconds with a proper methane concentration. FLICC was adopted for velocity measurements, and promising results were obtained for near-wall measurements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy