SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Y) ;hsvcat:4"

Sökning: WFRF:(Zhang Y) > Lantbruksvetenskap

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Crous, P. W., et al. (författare)
  • Fusarium : more than a node or a foot-shaped basal cell
  • 2021
  • Ingår i: Studies in mycology. - : CENTRAALBUREAU SCHIMMELCULTURE. - 0166-0616 .- 1872-9797. ; :98
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org).
  •  
2.
  • Groenen, M. A., et al. (författare)
  • Analyses of pig genomes provide insight into porcine demography and evolution
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 491:7424, s. 393-398
  • Tidskriftsartikel (refereegranskat)abstract
    • For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars approximately 1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.
  •  
3.
  • Zhong, Ziqian, 1995, et al. (författare)
  • Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity
  • 2023
  • Ingår i: Science Advances. - 2375-2548. ; 9:32
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of atmospheric vapor pressure deficit (VPD) on plant photosynthesis has long been acknowledged, but large interactions with air temperature (T) and soil moisture (SM) still hinder a complete understanding of the influence of VPD on vegetation production across various climate zones. Here, we found a diverging response of productivity to VPD in the Northern Hemisphere by excluding interactive effects of VPD with T and SM. The interactions between VPD and T/SM not only offset the potential positive impact of warming on vegetation productivity but also amplifies the negative effect of soil drying. Notably, for high-latitude ecosystems, there occurs a pronounced shift in vegetation productivity's response to VPD during the growing season when VPD surpasses a threshold of 3.5 to 4.0 hectopascals. These results yield previously unknown insights into the role of VPD in terrestrial ecosystems and enhance our comprehension of the terrestrial carbon cycle's response to global warming.
  •  
4.
  • Li, Yanping, et al. (författare)
  • Brown Algae Carbohydrates : Structures, Pharmaceutical Properties, and Research Challenges
  • 2021
  • Ingår i: Marine Drugs. - : MDPI AG. - 1660-3397 .- 1660-3397. ; 19
  • Forskningsöversikt (refereegranskat)abstract
    • Brown algae (Phaeophyceae) have been consumed by humans for hundreds of years. Current studies have shown that brown algae are rich sources of bioactive compounds with excellent nutritional value, and are considered functional foods with health benefits. Polysaccharides are the main constituents of brown algae; their diverse structures allow many unique physical and chemical properties that help to moderate a wide range of biological activities, including immunomodulation, antibacterial, antioxidant, prebiotic, antihypertensive, antidiabetic, antitumor, and anticoagulant activities. In this review, we focus on the major polysaccharide components in brown algae: the alginate, laminarin, and fucoidan. We explore how their structure leads to their health benefits, and their application prospects in functional foods and pharmaceuticals. Finally, we summarize the latest developments in applied research on brown algae polysaccharides.
  •  
5.
  • Zhang, Y., et al. (författare)
  • Light for life : new light solutions for urban plant sites
  • 2022
  • Ingår i: Proceedings of the IX International Symposium on Light in Horticulture. - 0567-7572 .- 2406-6168. ; 1337, s. 417-434
  • Konferensbidrag (refereegranskat)abstract
    • Within the next 30 years, two thirds of the human population will live in a city. This growing urban population requires a major shift in the way we produce and distribute food, since conventional agriculture practices are responsible for climate change, biodiversity losses, pollution of waterways, soil degradation, etc. Urban and peri-urban agriculture and forestry represent one of the strategies that can contribute to climate mitigation, adaptation and development. Amongst the urban farming systems, rooftop plant factories may provide part of the solution for vegetable and fruit production in the city, while solving current problems created by existing flat roofs and saving on arable land outside the city. This article presents a study of rooftop greenhouse located on a typical warehouse in Malmö, Sweden (lat. 55.6° N, long. 13.0° E). The goal of the study was to investigate the effect on energy use of building a greenhouse on the roof of an existing warehouse. The study was performed by dynamic energy simulations with the computer program IDA-ICE. The results show that adding the rooftop greenhouse on the warehouse reduces total energy use compared to greenhouse and warehouse as stand-alone structures. Furthermore, the results indicate that the glazing and shading solutions are important aspects determining the energy-efficiency of the integrated system. The energy use for electric lighting is also significantly reduced by the rooftop greenhouse compared to an indoor horizontal farm of similar size illuminated by LED lamps. The main conclusion is that rooftop greenhouses offer a great potential for food production in the city with the additional benefit of reducing overall energy use of host building and greenhouse. Rooftop greenhouses are also more energy-efficient than indoor farms illuminated by LEDs, when considering all energy end-uses (heating, cooling, lighting, and ventilation).
  •  
6.
  • Awasthi, S K, et al. (författare)
  • Multi-criteria research lines on livestock manure biorefinery development towards a circular economy : From the perspective of a life cycle assessment and business models strategies
  • 2022
  • Ingår i: Journal of Cleaner Production. - : Elsevier. - 0959-6526 .- 1879-1786. ; 341
  • Tidskriftsartikel (refereegranskat)abstract
    • Livestock manure (LSM) is a profitable waste if handled sensibly, but simultaneously it imposes several environmental and health impacts if managed improperly. Several approaches have been adopted globally to cartel the problem associated with LSM management and recovery of value-added products, still, technological innovation needs further upgradation in consideration with the environment, energy, and economy. This review delivered a vibrant portrait of manure management, which includes, bioenergy generation and resource recovery strategies, their current scenario, opportunities, challenges, and prospects for future researches along with global regulations and policies. Several bioenergy generation and nutrient recoveries technologies have been discussed in details, still, the major glitches allied with these technologies are its high establishment costs, operational costs, manure assortment, and digestate handling. This review also discussed the techno-economic assessment (TEA) and life cycle assessment (LCA) of LSM management operation in the context of their economical and environmental sustainability. Still, extensive researches needed to build an efficient manure management framework to advance the integrated bioenergy production, nutrients recycling, and digestate utilization with least environmental impacts and maximal economical gain, which has critically discussed in the current review.
  •  
7.
  • Chen, Z, et al. (författare)
  • Importance of heterotrophic nitrification and dissimilatory nitrate reduction to ammonium in a cropland soil: Evidences from a 15N tracing study to literature synthesis
  • 2015
  • Ingår i: Soil Biology and Biochemistry. - : Elsevier BV. - 0038-0717 .- 1879-3428. ; 91, s. 65-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Future climate change is predicted to influence soil moisture regime, a key factor regulating soil nitrogen (N) cycling. To elucidate how soil moisture affects gross N transformation in a cultivated black soil, a 15N tracing study was conducted at 30%, 50% and 70% water-filled pore space (WFPS). While gross mineralization rate of recalcitrant organic N (Nrec) increased from 0.56 to 2.47 mg N kg−1 d−1, the rate of labile organic N mineralization declined from 4.23 to 2.41 mg N kg−1 d−1 with a WFPS increase from 30% to 70%. Similar to total mineralization, no distinct moisture effect was found on total immobilization of ammonium, which primarily entered the Nrec pool. Nitrate (NO3−) was mainly produced via autotrophic nitrification, which was significantly stimulated by increasing WFPS. Unexpectedly, heterotrophic nitrification was observed, with the highest rate of 1.06 mg N kg−1 d−1 at 30% WFPS, contributing 31.8% to total NO3− production, and decreased with WFPS. Dissimilatory nitrate reduction to ammonium (DNRA) increased from near zero (30% WFPS) to 0.26 mg N kg−1 d−1 (70% WFPS), amounting to 16.7–92.9% of NO3− consumption. A literature synthetic analysis from global multiple ecosystems showed that the rates of heterotrophic nitrification and DNRA in test soil were comparative to the forest and grassland ecosystems, and that heterotrophic nitrification was positively correlated with precipitation, soil organic carbon (SOC) and C/N, but negatively with pH and bulk density, while DNRA showed positive relationships with precipitation, clay, SOC, C/NO3− and WFPS. We suggested that low pH and bulk density and high SOC and C/N in test soil might favor heterotrophic nitrification, and that C and NO3− availability together with anaerobic condition were crucial for DNRA. Overall, our study highlights the role of moisture in regulating gross N turnover and the importance of heterotrophic nitrification for NO3− production under low moisture and DNRA for NO3− retention under high moisture in cropland.
  •  
8.
  • George, T. S., et al. (författare)
  • Organic phosphorus in the terrestrial environment : a perspective on the state of the art and future priorities
  • 2018
  • Ingår i: Plant and Soil. - : Springer Netherlands. - 0032-079X .- 1573-5036. ; 427:1-2, s. 191-208
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The dynamics of phosphorus (P) in the environment is important for regulating nutrient cycles in natural and managed ecosystems and an integral part in assessing biological resilience against environmental change. Organic P (P-o) compounds play key roles in biological and ecosystems function in the terrestrial environment being critical to cell function, growth and reproduction.Scope: We asked a group of experts to consider the global issues associated with P-o in the terrestrial environment, methodological strengths and weaknesses, benefits to be gained from understanding the P-o cycle, and to set priorities for P-o research.Conclusions: We identified seven key opportunities for P-o research including: the need for integrated, quality controlled and functionally based methodologies; assessment of stoichiometry with other elements in organic matter; understanding the dynamics of P-o in natural and managed systems; the role of microorganisms in controlling P-o cycles; the implications of nanoparticles in the environment and the need for better modelling and communication of the research. Each priority is discussed and a statement of intent for the P-o research community is made that highlights there are key contributions to be made toward understanding biogeochemical cycles, dynamics and function of natural ecosystems and the management of agricultural systems.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy