SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhao Fang) ;lar1:(cth)"

Sökning: WFRF:(Zhao Fang) > Chalmers tekniska högskola

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Fang, Shan, et al. (författare)
  • A Dynamic Transformation Car-Following Model for the Prediction of the Traffic Flow Oscillation
  • 2024
  • Ingår i: IEEE Intelligent Transportation Systems Magazine. - 1939-1390 .- 1941-1197. ; 16:1, s. 174-198
  • Tidskriftsartikel (refereegranskat)abstract
    • Car-following (CF) behavior is a fundamental of traffic flow modeling; it can be used for the virtual testing of connected and automated vehicles and the simulation of various types of traffic flow, such as free flow and traffic oscillation. Although existing CF models can replicate the free flow well, they are incapable of simulating complicated traffic oscillation, and it is difficult to strike a balance between accuracy and efficiency. This article investigates the error variation when the traffic oscillation is simulated by the intelligent driver model (IDM). Then, it divides the traffic oscillation into four phases (coasting, deceleration, acceleration, and stationary) by using the space headway of multiple steps. To simulate traffic oscillation between multiple human-driven vehicles, a dynamic transformation CF model is proposed, which includes the long-time prediction submodel [modified sequence-to-sequence (Seq2seq)] model, short-time prediction submodel (Transformer), and their dynamic transformation strategy]. The first submodel is utilized to simulate the coasting and stationary phases, while the second submodel is utilized to simulate the acceleration and deceleration phases. The results of experiments indicated that compared to K-nearest neighbors, IDM, and Seq2seq CF models, the dynamic transformation CF model reduces the trajectory error by 60.79–66.69% in microscopic traffic flow simulations, 7.71–29.91% in mesoscopic traffic flow simulations, and 1.59–18.26% in macroscopic traffic flow simulations. Moreover, the runtime of the dynamic transformation CF model (Inference) decreased by 14.43–66.17% when simulating the large-scale traffic flow.
  •  
4.
  • Fang, Zhao, 1986, et al. (författare)
  • TiO2 nanoparticle interactions with supported lipid membranes – an example of removal of membrane patches
  • 2016
  • Ingår i: RSC Advances. - 2046-2069. ; 6:94, s. 91102-91110
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a need for different levels of model systems for effect studies of engineered nanoparticles and the development of nanoparticle structure–activity relationships in biological systems. Descriptors for nanoparticles based on their interactions in molecular model systems may become useful to predict toxicological responses of the nanoparticles in cells. Towards this end, we report on nanoparticle-induced formation of holes in supported model membranes. Specifically, TiO2 nanoparticle – lipid membrane interactions were studied under low ionic strength, basic conditions (pH 8), using different membrane compositions and several surface-sensitive analytical techniques. It was found that for mixed POPC/POPG (PG fractions ≥ 35%) membranes on silica supports, under conditions where electrostatic repulsion was expected, the addition of TiO2 nanoparticles resulted in transient interaction curves, consistent with the removal of part of the lipid membrane. The formation of holes was inferred from quartz crystal microbalance with dissipation (QCM-D) monitoring, as well as from optical measurements by reflectometry, and also verified by atomic force microscopy (AFM) imaging. The interaction between the TiO2 nanoparticles and the PG-containing membranes was dependent on the presence of Ca2+ ions. A mechanism is suggested where TiO2 nanoparticles act as scavengers of Ca2+ ions associated with the supported membrane, leading to weakening of the interaction between the membrane and the support and subsequent removal of lipid mass as TiO2 nanoparticles spontaneously leave the surface. This mechanism is consistent with the observed formation of holes in the supported lipid membranes.
  •  
5.
  • Kunze, Angelika, 1978, et al. (författare)
  • Ion-mediated changes of supported lipid bilayers and their coupling to the substrate. A case of bilayer slip?
  • 2011
  • Ingår i: Soft Matter. - : Royal Society of Chemistry (RSC). - 1744-6848 .- 1744-683X. ; 7:18, s. 8582-8591
  • Tidskriftsartikel (refereegranskat)abstract
    • Ion-mediated (Ca(2+)) changes in viscoelastic, structural and optical properties of negatively charged solid supported lipid bilayers (SLBs) on SiO(2) surfaces were studied by means of quartz crystal microbalance with dissipation (QCM-D) monitoring and optical reflectometry. Despite the sensitivity of QCM-D to viscoeleastic/structural variations, it has not often been used to probe such changes for SLBs. SLBs were prepared from binary phospholipid mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC, neutral) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG, negatively charged) on SiO(2) sensor surfaces in a Ca(2+)-containing buffer. Interestingly, for bilayers containing POPG fractions above 35%, large QCM-D dissipation shifts occurred, when Ca(2+) was removed from buffer in contact with the SLB (while maintaining 100 mM NaCl). The accompanying frequency changes were small. These Ca(2+) mediated QCM-D responses are reversible, and a signal for considerable changes in the viscoelastic and structural properties of the SLB. Variation of Ca(2+)-concentration revealed a threshold concentration of around 0.4 mM for the changes in the SLB to occur. Below this value, at >35% POPG concentration in the SLB, the SLB appears to become more weakly attached to the SiO(2) substrate, which is partly attributed to a weakening of the POPG-substrate interaction in the absence of Ca(2+). A consequence of this is an oscillation-amplitude dependent dissipation, which we attribute to slip of the bilayer at higher oscillation amplitudes. Complementary experiments using a combined QCM-D/reflectometry instrument showed that the Ca(2+)-induced changes in the viscoelastic/structural properties of the SLB are accompanied by changes in the optical properties. We discuss different scenarios to explain the observed reversible effect of Ca(2+)-ions on the dissipative and optical properties of the mixed SLBs. Based on our results we propose the observed phenomenon to be a combination of geometric changes, internal structural changes, changes in the interfacial water layer, and a slip mechanism, i.e. friction between the SLB and the substrate.
  •  
6.
  • Shangguan, Zhichun, et al. (författare)
  • A rechargeable molecular solar thermal system below 0 °C
  • 2022
  • Ingår i: Chemical Science. - : Royal Society of Chemistry (RSC). - 2041-6539 .- 2041-6520. ; 13:23, s. 6950-6958
  • Tidskriftsartikel (refereegranskat)abstract
    • An optimal temperature is crucial for a broad range of applications, from chemical transformations, electronics, and human comfort, to energy production and our whole planet. Photochemical molecular thermal energy storage systems coupled with phase change behavior (MOST-PCMs) offer unique opportunities to capture energy and regulate temperature. Here, we demonstrate how a series of visible-light-responsive azopyrazoles couple MOST and PCMs to provide energy capture and release below 0 degrees C. The system is charged by blue light at -1 degrees C, and discharges energy in the form of heat under green light irradiation. High energy density (0.25 MJ kg(-1)) is realized through co-harvesting visible-light energy and thermal energy from the environment through phase transitions. Coatings on glass with photo-controlled transparency are prepared as a demonstration of thermal regulation. The temperature difference between the coatings and the ice cold surroundings is up to 22.7 degrees C during the discharging process. This study illustrates molecular design principles that pave the way for MOST-PCMs that can store natural sunlight energy and ambient heat over a wide temperature range.
  •  
7.
  • Xiong, Binyu, et al. (författare)
  • Numerical analysis of vanadium redox flow batteries considering electrode deformation under various flow fields
  • 2023
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 0378-7753. ; 564
  • Tidskriftsartikel (refereegranskat)abstract
    • The porous electrode of vanadium redox flow batteries (VRBs) is subject to deformation due to mechanical stress during stack assembling. The forces compress the electrode fiber into the flow channel and thus alter the electrode porosity ratio. Due to the complex mechanisms, the effects of resulting electrode morphological changes on VRB performance were usually ignored in existing studies. This paper proposes a three-dimensional VRB model considering the uneven electrode deformation to investigate the cell performance under different electrode compression ratios with three flow-field designs. Compression ratio (CR) and the intrusive part of the electrode are obtained under various mechanical stress by adjusting gasket thickness in the experiment. The proposed electrochemical model is established based on the comprehensive description of conservation laws and analyzed using the COMSOL platform. Three indices, namely the concentration overpotential, pressure drop, and distribution uniformity, are selected for the analysis under the three flow field designs and different CRs. The numerical study reveal that the pressure drop and the concentration overpotential are sensitive to the CR but less affected by the concentration uniformity. The minimum overpotential can be reached when the CR is around 40%–50%, depending on flow field designs, while a higher CR can cause a drastically increased pressure drop. It is also found that the interdigitated flow field with a CR of 45% is considered optimal. The insights from the proposed method demonstrate the significance of considering the effects of electrode deformation in the stack design under various flow fields.
  •  
8.
  • Zhao, Dandan, et al. (författare)
  • Investigation of ion irradiation hardening behaviors of tempered and long-term thermal aged T92 steel
  • 2018
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115. ; 511, s. 191-199
  • Tidskriftsartikel (refereegranskat)abstract
    • 9Cr ferritic/martensitic steels are promising materials for in-core components in advanced Gen-IV reactors. In these applications, their long-term microstructural stability under thermal exposure and resistance to neutron irradiation are essential. Tempered (unaged) and long-term thermal aged T92 samples were used to evaluate the effects of thermal aging and ion irradiation on the microstructure and micromechanical properties of the steel. Both the tempered and aged samples were irradiated with 3 MeV Fe11+ions to 0.25, 0.50, 1.00 and 5.00 dpa at room temperature. Using the nanoindentation technique, the irradiation hardening behaviors of T92 steel were investigated. The irradiation hardening effect was observed in both the tempered and aged T92 samples. To eliminate the soft substrate effect, the critical indentation depth was determined using the ratio of the average hardness of irradiated and unirradiated samples at the same depth. Under the same irradiation conditions, the macroscopic hardness values of the aged T92 samples after irradiation were lower than those of the tempered samples. The irradiation hardening effect was more significant in the aged T92 due to the decreased dislocation density and the coarsened martensitic lath after long-term thermal aging.
  •  
9.
  • Zhao, Dandan, et al. (författare)
  • Proton irradiation induced defects in T92 steels: An investigation by TEM and positron annihilation spectroscopy
  • 2019
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms. - : Elsevier BV. - 0168-583X. ; 442, s. 59-66
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to investigate proton irradiation damage on ferritic/martensitic T92 steels, both the unaged and aged (650 °C for 15,000 h) T92 steels were irradiated with 250 keV protons to 0.01, 0.05 and 0.20 dpa at room temperature due to the lower dose rate of protons compared with heavy-ions. The microstructural evolution induced by thermal aging and proton irradiation was studied by transmission electron microscopy and positron annihilation spectroscopy, and the corresponding micromechanical property changes were investigated by nano-indentation. After 0.20 dpa proton irradiation, the dominant irradiation-induced dislocation loops were a0100 type loops for both the unaged and aged samples. The dislocation-type defects in the aged T92 sample were larger in size and higher in number density, compared with those in the unaged samples. Less vacancy-type defects induced by protons were detected in the aged than the unaged T92 samples under the same irradiation conditions. The higher number density of dislocation-type defects led to more severe irradiation hardening in the aged T92 samples.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy