SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhao Fang) ;srt2:(2015-2019);hsvcat:2"

Sökning: WFRF:(Zhao Fang) > (2015-2019) > Teknik

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zhao, Dandan, et al. (författare)
  • Investigation of ion irradiation hardening behaviors of tempered and long-term thermal aged T92 steel
  • 2018
  • Ingår i: Journal of Nuclear Materials. - : Elsevier BV. - 0022-3115. ; 511, s. 191-199
  • Tidskriftsartikel (refereegranskat)abstract
    • 9Cr ferritic/martensitic steels are promising materials for in-core components in advanced Gen-IV reactors. In these applications, their long-term microstructural stability under thermal exposure and resistance to neutron irradiation are essential. Tempered (unaged) and long-term thermal aged T92 samples were used to evaluate the effects of thermal aging and ion irradiation on the microstructure and micromechanical properties of the steel. Both the tempered and aged samples were irradiated with 3 MeV Fe11+ions to 0.25, 0.50, 1.00 and 5.00 dpa at room temperature. Using the nanoindentation technique, the irradiation hardening behaviors of T92 steel were investigated. The irradiation hardening effect was observed in both the tempered and aged T92 samples. To eliminate the soft substrate effect, the critical indentation depth was determined using the ratio of the average hardness of irradiated and unirradiated samples at the same depth. Under the same irradiation conditions, the macroscopic hardness values of the aged T92 samples after irradiation were lower than those of the tempered samples. The irradiation hardening effect was more significant in the aged T92 due to the decreased dislocation density and the coarsened martensitic lath after long-term thermal aging.
  •  
2.
  • Zhao, Dandan, et al. (författare)
  • Proton irradiation induced defects in T92 steels: An investigation by TEM and positron annihilation spectroscopy
  • 2019
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms. - : Elsevier BV. - 0168-583X. ; 442, s. 59-66
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to investigate proton irradiation damage on ferritic/martensitic T92 steels, both the unaged and aged (650 °C for 15,000 h) T92 steels were irradiated with 250 keV protons to 0.01, 0.05 and 0.20 dpa at room temperature due to the lower dose rate of protons compared with heavy-ions. The microstructural evolution induced by thermal aging and proton irradiation was studied by transmission electron microscopy and positron annihilation spectroscopy, and the corresponding micromechanical property changes were investigated by nano-indentation. After 0.20 dpa proton irradiation, the dominant irradiation-induced dislocation loops were a0100 type loops for both the unaged and aged samples. The dislocation-type defects in the aged T92 sample were larger in size and higher in number density, compared with those in the unaged samples. Less vacancy-type defects induced by protons were detected in the aged than the unaged T92 samples under the same irradiation conditions. The higher number density of dislocation-type defects led to more severe irradiation hardening in the aged T92 samples.
  •  
3.
  • Zhou, Yang, et al. (författare)
  • Benzylamine-Treated Wide-Bandgap Perovskite with High Thermal-Photostability and Photovoltaic Performance
  • 2017
  • Ingår i: Advanced Energy Materials. - : WILEY-V C H VERLAG GMBH. - 1614-6832 .- 1614-6840. ; 7:22
  • Tidskriftsartikel (refereegranskat)abstract
    • Mixed iodide-bromide organolead perovskites with a bandgap of 1.70-1.80 eV have great potential to boost the efficiency of current silicon solar cells by forming a perovskite-silicon tandem structure. Yet, the stability of the perovskites under various application conditions, and in particular combined light and heat stress, is not well studied. Here, FA(0.15)Cs(0.85)Pb(I0.73Br0.27)(3), with an optical bandgap of approximate to 1.72 eV, is used as a model system to investigate the thermal-photostability of wide-bandgap mixed halide perovskites. It is found that the concerted effect of heat and light can induce both phase segregation and decomposition in a pristine perovskite film. On the other hand, through a postdeposition film treatment with benzylamine (BA) molecules, the highly defective regions (e.g., film surface and grain boundaries) of the film can be well passivated, thus preventing the progression of decomposition or phase segregation in the film. Besides the stability improvement, the BA-modified perovskite solar cells also exhibit excellent photovoltaic performance, with the champion device reaching a power conversion efficiency of 18.1%, a stabilized power output efficiency of 17.1% and an open-circuit voltage (V-oc) of 1.24 V.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy