SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zheng Lirong) ;hsvcat:3"

Sökning: WFRF:(Zheng Lirong) > Medicin och hälsovetenskap

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cheng, W., et al. (författare)
  • Medial reward and lateral non-reward orbitofrontal cortex circuits change in opposite directions in depression
  • 2016
  • Ingår i: Brain. - : Oxford University Press. - 0006-8950 .- 1460-2156. ; 139:12, s. 3296-3309
  • Tidskriftsartikel (refereegranskat)abstract
    • The first brain-wide voxel-level resting state functional connectivity neuroimaging analysis of depression is reported, with 421 patients with major depressive disorder and 488 control subjects. Resting state functional connectivity between different voxels reflects correlations of activity between those voxels and is a fundamental tool in helping to understand the brain regions with altered connectivity and function in depression. One major circuit with altered functional connectivity involved the medial orbitofrontal cortex Brodmann area 13, which is implicated in reward, and which had reduced functional connectivity in depression with memory systems in the parahippocampal gyrus and medial temporal lobe, especially involving the perirhinal cortex Brodmann area 36 and entorhinal cortex Brodmann area 28. The Hamilton Depression Rating Scale scores were correlated with weakened functional connectivity of the medial orbitofrontal cortex Brodmann area 13. Thus in depression there is decreased reward-related and memory system functional connectivity, and this is related to the depressed symptoms. The lateral orbitofrontal cortex Brodmann area 47/12, involved in non-reward and punishing events, did not have this reduced functional connectivity with memory systems. Second, the lateral orbitofrontal cortex Brodmann area 47/12 had increased functional connectivity with the precuneus, the angular gyrus, and the temporal visual cortex Brodmann area 21. This enhanced functional connectivity of the non-reward/punishment system (Brodmann area 47/12) with the precuneus (involved in the sense of self and agency), and the angular gyrus (involved in language) is thus related to the explicit affectively negative sense of the self, and of self-esteem, in depression. A comparison of the functional connectivity in 185 depressed patients not receiving medication and 182 patients receiving medication showed that the functional connectivity of the lateral orbitofrontal cortex Brodmann area 47/12 with these three brain areas was lower in the medicated than the unmedicated patients. This is consistent with the hypothesis that the increased functional connectivity of the lateral orbitofrontal cortex Brodmann area 47/12 is related to depression. Relating the changes in cortical connectivity to our understanding of the functions of different parts of the orbitofrontal cortex in emotion helps to provide new insight into the brain changes related to depression. 
  •  
2.
  • Bao, D., et al. (författare)
  • A smart catheter system for minimally invasive brain monitoring
  • 2015
  • Ingår i: Proceedings of the International Conference on Biomedical Electronics and Devices. - : SciTePress. - 9789897580710 ; , s. 198-203
  • Konferensbidrag (refereegranskat)abstract
    • This paper demonstrates a smart catheter system with intracranial pressure (ICP) and temperature sensing capability which is designed for real-time monitoring in traumatic brain injury (TBI) therapy. It uses a single flexible catheter with a 1 mm (3 Fr) diameter that integrates electrodes and sophisticated silicon chip on flexible substrates, enabling multimodality monitoring of physiological signals. A micro-electromechanical-system (MEMS) catheter pressure sensor is mounted on the distal end. It can be used for detecting both pressure and temperature by different switch configurations, which minimizes the size of catheter and reduces the cost. The interconnects (signalling conductors) are printed on a bio-compatible flexible substrate, and the sensor is interfaced with an embedded electronic system at the far-end. The electronic system consists of analog front end with analog-to-digital converter (ADC), a microcontroller, and data interface to the hospital infrastructure with a graphical user interface (GUI). The overall smart catheter system achieves a pressure sensing root mean square error (RMSE) of ±1.5 mmHg measured from 20 mmHg to 300 mmHg above 1 atm and a temperature sensing RMSE of ±0.08°C measured from 32°C to 42°C. The sampling rate can be up to 10S/s. The in vivo performance is demonstrated in laboratory animals.
  •  
3.
  • Jin, Rong, et al. (författare)
  • Profiles, sources and potential exposures of parent, chlorinated and brominated polycyclic aromatic hydrocarbons in haze associated atmosphere
  • 2017
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 593-594, s. 390-398
  • Tidskriftsartikel (refereegranskat)abstract
    • Profiles, sources and potential exposures of chlorinated and brominated polycyclic aromatic hydrocarbons (ClPAHs and BrPAHs) in haze associated atmosphere remain unclear. Haze events happened frequently during heating period in Beijing provided a typical urban context to investigate the concentrations, profiles, sources and potential exposures of ClPAHs, BrPAHs and their non-halogenated parent compounds (PAHs) in air samples. Average concentrations of PAHs, ClPAHs and BrPAHs during heating periods (with more frequent haze events) were about 3-9 times higher than during non-heating periods. Concentrations of particulate matter (PM)-associated ClPAHs and BrPAHs were higher in heating period than in non-heating period, while for gas-associated ClPAHs and BrPAHs, this distinction was not significant. Congener patterns and congener profiles indicated that with increasing coal combustion during the heating period, concentrations of PAHs and ClPAHs in air were elevated in comparison to the non-heating period. Inhalation of PM-associated PAHs, ClPAHs and BrPAHs accounted for higher exposure than inhalation of gas phase and dermal contact of both gas phase and particulate phase. In this study we found that the particulate phase is the dominant exposure pathway of atmospheric PAHs, ClPAHs and BrPAHs during haze days, which is different from previous studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy