SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zheng Lirong) ;mspu:(publicationother)"

Sökning: WFRF:(Zheng Lirong) > Annan publikation

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Shen, Jue, et al. (författare)
  • A Passive UHF/UWB RFID Tag with Inkjet-Printed Electrochromic Polyimide Display for IoT Application
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • This paper proposes a passive Ultra-High Frequency(UHF) Radio-Frequency Identification (RFID) tag withinkjet-printed Electrochromic (EC) polyimide display andUltra-Wideband (UWB) transmitter for information display inthe Internet-of-Things (IoT) - both remotely by transmitting information to backend side and locally by displaying at tag side. The UHF part remotely powers-up and controls the tag asconventional passive RFID tag does. To overcome the limitations of uplink capacity and massive-tag information feedback, UWB transmitter replaces UHF-RFID backscattering to achieve Mbps transmission data rate and 2000 tags/sec tag identification rate. To provide an ambient and direct human-to-device displayinterface, EC display on polyimide substrate is integrated at tagside. Aggressive duty-cycling power management scheme with dual supplies is designed to drive EC display and UWB transmitter under the microwatt level tag power budget through RF energy harvesting. In this scheme, energy for display refreshing is accumulated over multiple power management cycles; energy for UWB transmission is stored over a load capacitor. Single-pixel addressing scheme with minimized pixelsize is proposed to further reduce display power and improve tag sensitivity by exploiting EC display bi-stability. The circuit prototype has been fabricated in 0.18 μm CMOS process. Experimental results demonstrate that the EC display can be refreshed with tag sensitivity (input RF power) of -10.5 dBm at11.7 sec/cm2 update rate, and the UWB transmitter can bepowered up for 2 Mbps pulse rate and 35% operation duty cycle with tag sensitivity of -18.5 dBm.
  •  
3.
  • Shen, Jue, et al. (författare)
  • Interactive UHF/UWB RFID Tag for Mass Customization
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Mass customization (MC) under the context ofthe Internet of Things (IoT) is expected to reform traditionalmass manufacturing. To contribute to MC from information communication and user interaction aspects, this work proposes an Ultra-High Frequency (UHF) RFID tag with Impulse-Radio Ultra-Wide Band (IR UWB) transmitter and inkjet-printed Electrochromic (EC) display. First, compared to conventional UHF RFID tags, the proposed tag shows advantages of higher data rate while still keeping low power consumption. A modified communication protocol for such tag is proposed to decrease the response time in multi-tag accessing scenarios to less than 500 ms/1000 tags by the pipeline of IR UWB transmission of tag response and UHF RFID reception of reader acknowledgement and by reducingthe length of empty slots. Secondly, the tag is integrated with a flexible Electro-chromic (EC) display manufactured by inkjet-printing on the polyimide substrate. The tag with the display works as an automatically refreshed paper label which offers an intuitive human-to-device interface to improve the efficiency of the offline workers. To conquer material variation while make use of long retention time of the printed EC display, the threshold voltage of EC display is utilized and a feedback comparator is designed to start refreshing EC display based on the threshold voltage. For functional verification, a Silicon-on-Chip (SoC) is implementedin UMC 180 nm CMOS process. According to experimental results: 1) the IR UWB transmitter shows performances of 1.02 V pulse amplitude, 900 ps pulse duration and 18 pJ/pulse energy consumption; 2) the EC display driver with a feedback comparator automatically starts to refresh display when the image fades out, and reduces the power consumption for retaining image to 1.98 mW per 1 cm2 display size. The UHF/UWB RFID display tag integrated on polyimide substrate is conceptually demonstrated at the end of the paper.
  •  
4.
  • Yang, Kunlong, et al. (författare)
  • Merged acquisition-processing system based on a photoelectrical neural network
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • In brain-inspired computing, one of the most attractive fields of study currently, new issues are emerging despite its booming development. From the systems perspective, the performances of the existing systems are hindered by inadequate hardware support, particularly the unavoidable data acquisition and transmission between the sensor module and the data processing module. In this work, we break this bottleneck by proposing a photoelectrical neural network (PNN) that merges the new sensing function into the processing network. Benefitting from its high-parallel structure and minimized hardware consumption, a novel merged acquisition-processing (MAP) system with very high efficiency and very low cost has been developed. As the key component of the MAP system, a dual-mode photoelectrical synapse (DMPS) is carefully designed and developed. It has advantages in terms of both function and performance as compared to the existing artificial synapses, which make it the best candidate for the proposed system. This work will initiate an entirely new field of unconventional neuromorphic systems.
  •  
5.
  • Zhou, Qin, et al. (författare)
  • A flexible energy detection IR-UWB receiver for RFID and WSN
  • 2010
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • This paper presents an energy detection impulse radio ultra-wideband (IR-UWB) receiver for radio frequency identification (RFID) and wireless sensor networks (WSN) applications. As opposed to coherent receivers, it uses simple square-integrate samplers, that allows low complexity and low power implementations. This prototype is composed by an analog front-end and timing-critical digital blocks in UMC 90nm CMOS process, and an Altera Cyclone III FPGA development kit for back-end processing, connected by a high speed mezzanine card (HSMC). Thanks to the flexible back-end on FPGA, the receiver is featured by high programmability and multi-mode operation which adopts a wide range of pulse rates and data rates, different modulation and synchronization schemes, and various channel environments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy